Galy Valier

No Thumbnail Available
Last Name
Galy
First Name
Valier
ORCID
0000-0003-0385-8443

Search Results

Now showing 1 - 20 of 42
  • Preprint
    Global-scale evidence for the refractory nature of riverine black carbon
    ( 2018-05) Coppola, Alysha I. ; Wiedemeier, Daniel B. ; Galy, Valier ; Haghipour, Negar ; Hanke, Ulrich ; Nascimento, Gabriela S. ; Usman, Muhammed ; Blattmann, Thomas M. ; Reisser, Moritz ; Freymond, Chantal V. ; Zhao, Meixun ; Voss, Britta M. ; Wacker, Lukas ; Schefuß, Enno ; Peucker-Ehrenbrink, Bernhard ; Abiven, Samuel ; Schmidt, Michael W. I. ; Eglinton, Timothy I.
    Wildfires and incomplete combustion of fossil fuel produce large amounts of black carbon. Black carbon production and transport are essential components of the carbon cycle. Constraining estimates of black carbon exported from land to ocean is critical, given ongoing changes in land use and climate, which affect fire occurrence and black carbon dynamics. Here, we present an inventory of the concentration and radiocarbon content (∆14C) of particulate black carbon for 18 rivers around the globe. We find that particulate black carbon accounts for about 15.8 ± 0.9% of river particulate organic carbon, and that fluxes of particulate black carbon co-vary with river-suspended sediment, indicating that particulate black carbon export is primarily controlled by erosion. River particulate black carbon is not exclusively from modern sources but is also aged in intermediate terrestrial carbon pools in several high-latitude rivers, with ages of up to 17,000 14C years. The flux-weighted 14C average age of particulate black carbon exported to oceans is 3,700 ± 400 14C years. We estimate that the annual global flux of particulate black carbon to the ocean is 0.017 to 0.037 Pg, accounting for 4 to 32% of the annually produced black carbon. When buried in marine sediments, particulate black carbon is sequestered to form a long-term sink for CO2.
  • Article
    Paleoreconstruction of organic carbon inputs to an oxbow lake in the Mississippi River watershed : effects of dam construction and land use change on regional inputs
    (John Wiley & Sons, 2015-10-10) Bianchi, Thomas S. ; Galy, Valier ; Rosenheim, Brad E. ; Shields, Michael ; Cui, Xingqian ; Van Metre, Peter
    We use a dated sediment core from Lake Whittington (USA) in the lower Mississippi River to reconstruct linkages in the carbon cycling and fluvial sediment dynamics over the past 80 years. Organic carbon (OC) sources were characterized using bulk (δ13C, ramped pyrolysis-oxidation (PyrOx) 14C, δ15N, and TN:OC ratios) and compound-specific (lignin phenols and fatty acids, including δ13C and 14C of the fatty acids) analyses. Damming of the Missouri River in the 1950s, other hydrological modifications to the river, and soil conservation measures resulted in reduced net OC export, in spite of increasing OC concentrations. Decreasing δ13C values coincided with increases in δ15N, TN:OC ratios, long-chain fatty acids, and lignin-phenol concentrations, suggesting increased inputs of soil-derived OC dominated by C3 vegetation, mainly resulting from changes in farming practices and crop distribution. However, ramped PyrOx 14C showed no discernible differences downcore in thermochemical stability, indicating a limited impact on soil OC turnover.
  • Article
    Soothsaying DOM: A current perspective on the future of oceanic dissolved organic carbon
    (Frontiers Media, 2020-05-25) Wagner, Sasha ; Schubotz, Florence ; Kaiser, Karl ; Hallmann, Christian ; Waska, Hannelore ; Rossel, Pamela ; Hansman, Roberta L. ; Elvert, Marcus ; Middelburg, Jack J. ; Engel, Anja ; Blattmann, Thomas M. ; Catalá, Teresa S. ; Lennartz, Sinikka T. ; Gomez-Saez, Gonzalo V. ; Pantoja-Gutiérrez, Silvio ; Bao, Rui ; Galy, Valier
    The vast majority of freshly produced oceanic dissolved organic carbon (DOC) is derived from marine phytoplankton, then rapidly recycled by heterotrophic microbes. A small fraction of this DOC survives long enough to be routed to the interior ocean, which houses the largest and oldest DOC reservoir. DOC reactivity depends upon its intrinsic chemical composition and extrinsic environmental conditions. Therefore, recalcitrance is an emergent property of DOC that is analytically difficult to constrain. New isotopic techniques that track the flow of carbon through individual organic molecules show promise in unveiling specific biosynthetic or degradation pathways that control the metabolic turnover of DOC and its accumulation in the deep ocean. However, a multivariate approach is required to constrain current carbon fluxes so that we may better predict how the cycling of oceanic DOC will be altered with continued climate change. Ocean warming, acidification, and oxygen depletion may upset the balance between the primary production and heterotrophic reworking of DOC, thus modifying the amount and/or composition of recalcitrant DOC. Climate change and anthropogenic activities may enhance mobilization of terrestrial DOC and/or stimulate DOC production in coastal waters, but it is unclear how this would affect the flux of DOC to the open ocean. Here, we assess current knowledge on the oceanic DOC cycle and identify research gaps that must be addressed to successfully implement its use in global scale carbon models.
  • Article
    Millennial soil retention of terrestrial organic matter deposited in the Bengal Fan
    (Nature Publishing Group, 2018-08-10) French, Katherine L. ; Hein, Christopher J. ; Haghipour, Negar ; Wacker, Lukas ; Kudrass, Hermann ; Eglinton, Timothy I. ; Galy, Valier
    The abundance of organic carbon (OC) in vegetation and soils (~2,600 PgC) compared to carbon in the atmosphere (~830 PgC) highlights the importance of terrestrial OC in global carbon budgets. The residence time of OC in continental reservoirs, which sets the rates of carbon exchange between land and atmosphere, represents a key uncertainty in global carbon cycle dynamics. Retention of terrestrial OC can also distort bulk OC- and biomarker-based paleorecords, yet continental storage timescales remain poorly quantified. Using “bomb” radiocarbon (14C) from thermonuclear weapons testing as a tracer, we model leaf-wax fatty acid and bulk OC 14C signatures in a river-proximal marine sediment core from the Bay of Bengal in order to constrain OC storage timescales within the Ganges-Brahmaputra (G-B) watershed. Our model shows that 79–83% of the leaf-waxes in this core were stored in continental reservoirs for an average of 1,000–1,200 calendar years, while the remainder was stored for an average of 15 years. This age structure distorts high-resolution organic paleorecords across geologically rapid events, highlighting that compound-specific proxy approaches must consider storage timescales. Furthermore, these results show that future environmental change could destabilize large stores of old - yet reactive - OC currently stored in tropical basins.
  • Article
    Significance of perylene for source allocation of terrigenous organic matter in aquatic sediments.
    (American Chemical Society, 2019-06-19) Hanke, Ulrich ; Lima-Braun, Ana L. ; Eglinton, Timothy I. ; Donnelly, Jeffrey P. ; Galy, Valier ; Poussart, Pascale F. ; Hughen, Konrad A. ; McNichol, Ann P. ; Xu, Li ; Reddy, Christopher M.
    Perylene is a frequently abundant, and sometimes the only polycyclic aromatic hydrocarbon (PAH) in aquatic sediments, but its origin has been subject of a longstanding debate in geochemical research and pollutant forensics because its historical record differs markedly from typical anthropogenic PAHs. Here we investigate whether perylene serves as a source-specific molecular marker of fungal activity in forest soils. We use a well-characterized sedimentary record (1735 to 1999) from the anoxic-bottom waters of the Pettaquamscutt River basin, RI, USA to examine mass accumulation rates and isotope records of perylene, and compare them with total organic carbon and the anthropogenic PAH fluoranthene. We support our arguments with radiocarbon (14C) data of higher plant leaf-wax n-alkanoic acids. Isotope-mass balance calculations of perylene and n-alkanoic acids indicate that ~40 % of sedimentary organic matter is of terrestrial origin. Further, both terrestrial markers are pre-aged on millennial time-scales prior to burial in sediments and insensitive to elevated 14C concentrations following nuclear weapons testing in the mid-20th Century. Instead, changes coincide with enhanced erosional flux during urban sprawl. These findings suggest that perylene is definitely a product of soil derived fungi, and a powerful chemical tracer to study spatial and temporal connectivity between terrestrial and aquatic environments.
  • Article
    Analytical and computational advances, opportunities, and challenges in marine organic biogeochemistry in an era of "Omics"
    (Frontiers Media, 2020-09-02) Steen, Andrew D. ; Kusch, Stephanie ; Abdulla, Hussain A. ; Cakić, Nevenka ; Coffinet, Sarah ; Dittmar, Thorsten ; Fulton, James M. ; Galy, Valier ; Hinrichs, Kai-Uwe ; Ingalls, Anitra ; Koch, Boris P. ; Kujawinski, Elizabeth B. ; Liu, Zhanfei ; Osterholz, Helena ; Rush, Darci ; Seidel, Michael ; Sepulveda, Julio ; Wakeham, Stuart G.
    Advances in sampling tools, analytical methods, and data handling capabilities have been fundamental to the growth of marine organic biogeochemistry over the past four decades. There has always been a strong feedback between analytical advances and scientific advances. However, whereas advances in analytical technology were often the driving force that made possible progress in elucidating the sources and fate of organic matter in the ocean in the first decades of marine organic biogeochemistry, today process-based scientific questions should drive analytical developments. Several paradigm shifts and challenges for the future are related to the intersection between analytical progress and scientific evolution. Untargeted “molecular headhunting” for its own sake is now being subsumed into process-driven targeted investigations that ask new questions and thus require new analytical capabilities. However, there are still major gaps in characterizing the chemical composition and biochemical behavior of macromolecules, as well as in generating reference standards for relevant types of organic matter. Field-based measurements are now routinely complemented by controlled laboratory experiments and in situ rate measurements of key biogeochemical processes. And finally, the multidisciplinary investigations that are becoming more common generate large and diverse datasets, requiring innovative computational tools to integrate often disparate data sets, including better global coverage and mapping. Here, we compile examples of developments in analytical methods that have enabled transformative scientific advances since 2004, and we project some challenges and opportunities in the near future. We believe that addressing these challenges and capitalizing on these opportunities will ensure continued progress in understanding the cycling of organic carbon in the ocean.
  • Preprint
    Erosion of organic carbon in the Arctic as a geological carbon dioxide sink
    ( 2015-05-12) Hilton, Robert G. ; Galy, Valier ; Gaillardet, Jerome ; Dellinger, Mathieu ; Bryant, Charlotte ; O'Regan, Matt ; Grocke, Darren R. ; Coxall, Helen ; Bouchez, Julien ; Calmels, Damien
    Soils of the northern high latitudes store carbon over millennial timescales (103 yrs) and contain approximately double the carbon stock of the atmosphere1-3. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralisation and carbon dioxide (CO2) release4-6. However, some of this soil organic carbon may be eroded and transferred to rivers7-9. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (>104 yrs), geological CO2 sink8-10. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify POC source in the Mackenzie River, the main sediment supplier to the Arctic Ocean11,12 and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios 26 to correct for rock-derived POC10,13,14. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5800±800 yr, much older than large tropical rivers13,14. Based on the measured biospheric POC content and variability in annual sediment yield15, we calculate a biospheric POC flux of 𝟐. 𝟐𝟐−𝟎𝟎.𝟗𝟗 +𝟏𝟏.𝟑𝟑 TgC yr-1 from the Mackenzie River, three times the CO2 drawdown by silicate weathering16. Offshore we find evidence for efficient terrestrial organic carbon burial over the Holocene, suggesting that erosion of organic carbon-rich, high latitude soils may result in a significant geological CO2 sink.
  • Preprint
    The effect of sample drying temperature on marine particulate organic carbon composition
    ( 2018-02) Rosengard, Sarah Z. ; Lam, Phoebe J. ; McNichol, Ann P. ; Johnson, Carl G. ; Galy, Valier
    Compositional changes in marine particulate organic carbon (POC) throughout the water column trace important processes that underlie the biological pump’s efficiency. While labor-intensive, particle sampling efforts offer potential to expand the empirical POC archive at different stages in the water column, provided that organic composition is sufficiently preserved between sampling and analysis. The standard procedure for preserving organic matter composition in marine samples is to immediately store particles at -80°C to -20°C until they can be freeze-dried for analysis. This report investigates the effect of warmer drying and storage temperatures on POC composition, which applies to the majority of POC samples collected in the field without intention for organic analysis. Particle samples collected off Woods Hole, MA were immediately dried at 56°C, at room temperature, or stored at -80°C until being freeze-dried. Results show that oven- and air-drying did not shift the bulk composition (i.e., carbon and nitrogen content and stable isotope composition) of POC in the samples relative to freeze-drying. Similarly, warmer drying temperatures did not affect POC thermal stability, as inferred by ramped pyrolysis/oxidation (RPO), a growing technique that uses a continuous temperature ramp to differentiate components of organic carbon by their decomposition temperature. Oven- and air-drying did depress lipid abundances relative to freeze-drying, the extent of which depended on compound size and structure. The data suggest that field samples dried at room temperatures and 56°C are appropriate for assessing bulk POC composition and thermal stability, but physical mechanisms such as molecular volatilization bias their lipid composition.
  • Preprint
    Multiple plant-wax compounds record differential sources and ecosystem structure in large river catchments
    ( 2016-04) Hemingway, Jordon D. ; Schefuß, Enno ; Dinga, Bienvenu J. ; Pryer, Helena V. ; Galy, Valier
    The concentrations, distributions, and stable carbon isotopes (δ13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and δ13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25 – C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7‰ (±1σ standard deviation) spread in δ13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52 – 0.94). In contrast, plant-dominated n-alcohols (C26 – C36) and n-alkanoic acids (C26 – C36) exhibit stronger positive correlations (r = 0.70 – 0.99) between homologue concentrations and depleted δ13C values (individual homologues average ≤ -31.3‰ and -30.8‰, respectively), with lower δ13C variability across chain-lengths (2.6 ± 0.6‰ and 2.0 ± 1.1‰, respectively). All individual plant-wax lipids show little temporal δ13C variability throughout the time-series (1σ ≤ 0.9‰), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19 – 58% of total plant-wax lipids) and n-alkanoic acids (26 – 76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5 – 16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.
  • Article
    Turbidity currents can dictate organic carbon fluxes across river‐fed fjords: an example from Bute Inlet (BC, Canada)
    (American Geophysical Union, 2022-05-25) Hage, Sophie ; Galy, Valier ; Cartigny, Matthieu J. B. ; Heerema, Catharina ; Heijnen, Maarten S. ; Acikalin, Sanem ; Clare‬, Michael A. ; Giesbrecht, Ian J. W. ; Grocke, Darren R. ; Hendry, A. ; Hilton, Robert G. ; Hubbard, Stephen M. ; Hunt, James E. ; Lintern, D. Gwyn ; McGhee, Claire A. ; Parsons, Daniel R. ; Pope, Edward L. ; Stacey, Cooper David ; Sumner, Esther J. ; Tank, Suzanne E. ; Talling, Peter J.
    The delivery and burial of terrestrial particulate organic carbon (OC) in marine sediments is important to quantify, because this OC is a food resource for benthic communities, and if buried it may lower the concentrations of atmospheric CO2 over geologic timescales. Analysis of sediment cores has previously shown that fjords are hotspots for OC burial. Fjords can contain complex networks of submarine channels formed by seafloor sediment flows, called turbidity currents. However, the burial efficiency and distribution of OC by turbidity currents in river-fed fjords had not been investigated previously. Here, we determine OC distribution and burial efficiency across a turbidity current system within Bute Inlet, a fjord in western Canada. We show that 62% ± 10% of the OC supplied by the two river sources is buried across the fjord surficial (30–200 cm) sediment. The sandy subenvironments (channel and lobe) contain 63% ± 14% of the annual terrestrial OC burial in the fjord. In contrast, the muddy subenvironments (overbank and distal basin) contain the remaining 37% ± 14%. OC in the channel, lobe, and overbank exclusively comprises terrestrial OC sourced from rivers. When normalized by the fjord’s surface area, at least 3 times more terrestrial OC is buried in Bute Inlet, compared to the muddy parts of other fjords previously studied. Although the long-term (>100 years) preservation of this OC is still to be fully understood, turbidity currents in fjords appear to be efficient at storing OC supplied by rivers in their near-surface deposits.
  • Preprint
    Post-glacial climate forcing of surface processes in the Ganges–Brahmaputra river basin and implications for carbon sequestration
    ( 2017-08) Hein, Christopher J. ; Galy, Valier ; Galy, Albert ; France-Lanord, Christian ; Kudrass, Hermann ; Schwenk, Tilmann
    Climate has been proposed to control both the rate of terrestrial silicate weathering and the export rate of associated sediments and terrestrial organic carbon to river-dominated margins – and thus the rate of sequestration of atmospheric CO2 in the coastal ocean – over glacial-interglacial timescales. Focused on the Ganges-Brahmaputra rivers, this study presents records of post-glacial changes in basin-scale Indian summer monsoon intensity and vegetation composition based on stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the channel-levee system of the Bengal Fan. It then explores the role of these changes in controlling the provenance and degree of chemical weathering of sediments exported by these rivers, and the potential climate feedbacks through organic-carbon burial in the Bengal Fan. An observed 40‰ shift in δD and a 3–4‰ shift in both bulk organic-carbon and plant-wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlates well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes likely coincided with a subtle focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, grain-size-normalized organic-carbon concentrations in the Bengal Fan remained constant through time, despite order-of-magnitude level changes in catchment-scale monsoon precipitation and enhanced chemical weathering (recorded as a gradual increase in K/Si* and detrital carbonate content, and decrease in H2O+/Si*, proxies) throughout the study period. These findings demonstrate a partial decoupling of climate change and silicate weathering during the Holocene and that marine organic-carbon sequestration rates primary reflect rates of physical erosion and sediment export as modulated by climatic changes. Together, these results reveal the magnitude of climate changes within the Ganges-Brahmaputra basin following deglaciation and a closer coupling of monsoon strength with OC burial than with silicate weathering on millennial timescales.
  • Article
    Direct measurement of riverine particulate organic carbon age structure
    (American Geophysical Union, 2012-10-03) Rosenheim, Brad E. ; Galy, Valier
    Carbon cycling studies focusing on transport and transformation of terrigenous carbon sources toward marine sedimentary sinks necessitate separation of particulate organic carbon (OC) derived from many different sources and integrated by river systems. Much progress has been made on isolating and characterizing young biologically-formed OC that is still chemically intact, however quantification and characterization of old, refractory rock-bound OC has remained troublesome. Quantification of both endmembers of riverine OC is important to constrain exchanges linking biologic and geologic carbon cycles and regulating atmospheric CO2 and O2. Here, we constrain petrogenic OC proportions in suspended sediment from the headwaters of the Ganges River in Nepal through direct measurement using ramped pyrolysis radiocarbon analysis. The unique results apportion the biospheric and petrogenic fractions of bulk particulate OC and characterize biospheric OC residence time. Compared to the same treatment of POC from the lower Mississippi-Atchafalaya River system, contrast in age spectra of the Ganges tributary samples illustrates the difference between small mountainous river systems and large integrative ones in terms of the global carbon cycle.
  • Article
    Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits
    (Hage, S., Galy, V. V., Cartigny, M. J. B., Acikalin, S., Clare, M. A., Grocke, D. R., Hilton, R. G., Hunt, J. E., Lintern, D. G., McGhee, C. A., Parsons, D. R., Stacey, C. D., Sumner, E. J., & Talling, P. J. (2020). Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits. Geology, 48(9), 882-887., 2020-05-29) Hage, Sophie ; Galy, Valier ; Cartigny, Matthieu J. B. ; Acikalin, Sanem ; Clare‬, Michael A. ; Grocke, Darren R. ; Hilton, Robert G. ; Hunt, James E. ; Lintern, D. Gwyn ; McGhee, Claire A. ; Parsons, Daniel R. ; Stacey, Cooper David ; Sumner, Esther J. ; Talling, Peter J.
    Burial of terrestrial biospheric particulate organic carbon in marine sediments removes CO2 from the atmosphere, regulating climate over geologic time scales. Rivers deliver terrestrial organic carbon to the sea, while turbidity currents transport river sediment further offshore. Previous studies have suggested that most organic carbon resides in muddy marine sediment. However, turbidity currents can carry a significant component of coarser sediment, which is commonly assumed to be organic carbon poor. Here, using data from a Canadian fjord, we show that young woody debris can be rapidly buried in sandy layers of turbidity current deposits (turbidites). These layers have organic carbon contents 10× higher than the overlying mud layer, and overall, woody debris makes up >70% of the organic carbon preserved in the deposits. Burial of woody debris in sands overlain by mud caps reduces their exposure to oxygen, increasing organic carbon burial efficiency. Sandy turbidity current channels are common in fjords and the deep sea; hence we suggest that previous global organic carbon burial budgets may have been underestimated.
  • Preprint
    Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils
    ( 2018-02-15) Hemingway, Jordon D. ; Hilton, Robert G. ; Hovius, Niels ; Eglinton, Timothy I. ; Haghipour, Negar ; Wacker, Lukas ; Chen, Meng-Chiang ; Galy, Valier
    Lithospheric organic carbon (“petrogenic”; OCpetro) is oxidized during exhumation and subsequent erosion within mountain ranges. This process is a significant source of CO2 to the atmosphere over geologic timescales, but the mechanisms that govern oxidation rates in mountain landscapes remain poorly constrained. We demonstrate that, on average, 67 ± 11 % of OCpetro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized within soils, leading to CO2 emissions of 6.1 – 18.6 t C km-2 yr-1. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OCpetro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO2 emissions fluxes that increase with erosion rate, thereby counteracting CO2 drawdown by silicate weathering and biospheric OC burial.
  • Article
    The pulse of the Amazon: fluxes of dissolved organic carbon, nutrients, and ions from the world's largest river
    (American Geophysical Union, 2021-03-15) Drake, Travis W. ; Hemingway, Jordon D. ; Kurek, Martin ; Peucker-Ehrenbrink, Bernhard ; Brown, Kristina A. ; Holmes, Robert M. ; Galy, Valier ; Moura, José M. ; Mitsuya, Miyuki ; Wassenaar, Leonard ; Six, Johan ; Spencer, Robert G. M.
    The Amazon River drains a diverse tropical landscape greater than 6 million km2, culminating in the world's largest export of freshwater and dissolved constituents to the ocean. Here, we present dissolved organic carbon (DOC), organic and inorganic nitrogen (DON, DIN), orthophosphate (PO43−), and major and trace ion concentrations and fluxes from the Amazon River using 26 samples collected over three annual hydrographs. Concentrations and fluxes were predominantly controlled by the annual wet season flood pulse. Average DOC, DON, DIN, and PO43− fluxes (±1 s.d.) were 25.5 (±1.0), 1.14 (±0.05), 0.82 (±0.03), and 0.063 (±0.003) Tg yr−1, respectively. Chromophoric dissolved organic matter absorption (at 350 nm) was strongly correlated with DOC concentrations, resulting in a flux of 74.8 × 106 m−2 yr−1. DOC and DON concentrations positively correlated with discharge while nitrate + nitrite concentrations negatively correlated, suggesting mobilization and dilution responses, respectively. Ammonium, PO43−, and silica concentrations displayed chemostatic responses to discharge. Major and trace ion concentrations displayed clockwise hysteresis (except for chloride, sodium, and rubidium) and exhibited either dilution or chemostatic responses. The sources of weathered cations also displayed seasonality, with the highest proportion of carbonate- and silicate-derived cations occurring during peak and baseflow, respectively. Finally, our seasonally resolved weathering model resulted in an average CO2 consumption yield of (3.55 ± 0.11) × 105 mol CO2 km−2 yr−1. These results represent an updated and temporally refined quantification of dissolved fluxes that highlight the strong seasonality of export from the world's largest river and set a robust baseline against which to gauge future change.
  • Preprint
    Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope fractionation of the Ramped Pyrolysis/Oxidation instrument at NOSAMS
    ( 2017-03) Hemingway, Jordon D. ; Galy, Valier ; Gagnon, Alan R. ; Grant, Katherine E. ; Rosengard, Sarah Z. ; Soulet, Guillaume ; Zigah, Prosper ; McNichol, Ann P.
    We estimate the blank carbon mass over the course of a typical Ramped PyrOx (RPO) analysis (150 to 1000 °C; 5 °C×min-1) to be (3.7 ± 0.6) μg C with an Fm value of 0.555 ± 0.042 and a δ13C value of (-29.0 ± 0.1) ‰ VPDB. Additionally, we provide equations for RPO Fm and δ13C blank corrections, including associated error propagation. By comparing RPO mass-weighted mean and independently measured bulk δ13C values for a compilation of environmental samples and standard reference materials (SRMs), we observe a small yet consistent 13C depletion within the RPO instrument (mean – bulk: μ = -0.8 ‰; ±1σ = 0.9 ‰; n = 66). In contrast, because they are fractionation-corrected by definition, mass-weighted mean Fm values accurately match bulk measurements (mean – bulk: μ = 0.005; ±1σ = 0.014; n = 36). Lastly, we show there exists no significant intra-sample δ13C variability across carbonate SRM peaks, indicating minimal mass-dependent kinetic isotope fractionation during RPO analysis. These data are best explained by a difference in activation energy between 13C- and 12C-containing compounds (13–12ΔE) of 0.3 to 1.8 J×mol-1, indicating that blank and mass-balance corrected RPO δ13C values accurately retain carbon source isotope signals to within 1 to 2‰.
  • Article
    From Andes to Amazon: assessing branched tetraether lipids as tracers for soil organic carbon in the Madre de Dios River system
    (American Geophysical Union, 2019-12-19) Kirkels, Frédérique M. S. A. ; Ponton, Camilo ; Galy, Valier ; West, A. Joshua ; Feakins, Sarah J. ; Peterse, Francien
    We investigate the implications of upstream processes and hydrological seasonality on the transfer of soil organic carbon (OC) from the Andes mountains to the Amazon lowlands by the Madre de Dios River (Peru), using branched glycerol dialkyl glycerol tetraether (brGDGT) lipids. The brGDGT signal in Andean soils (0.5 to 3.5 km elevation) reflects air temperature, with a lapse rate of −6.0 °C/km elevation (r 2 = 0.89, p < 0.001) and −5.6 °C/km elevation (r 2 = 0.89, p < 0.001) for organic and mineral horizons, respectively. The same compounds are present in river suspended particulate matter (SPM) with a lapse rate of −4.1 °C/km elevation (r 2 = 0.82, p < 0.001) during the wet season, where the offset in intercept between the temperature lapse rates for soils and SPM indicates upstream sourcing of brGDGTs. The lapse rate for SPM appears insensitive to an increasing relative contribution of 6‐methyl isomer brGDGTs produced within the river. River depth profiles show that brGDGTs are well mixed in the river and are not affected by hydrodynamic sorting. The brGDGTs accumulate relative to OC downstream, likely due to the transition of particulate OC to the dissolved phase and input of weathered soils toward the lowlands. The temperature‐altitude correlation of brGDGTs in Madre de Dios SPM contrasts with the Lower Amazon River, where the initial soil signature is altered by changes in seasonal in‐river production and variable provenance of brGDGTs. Our study indicates that brGDGTs in the Madre de Dios River system are initially soil derived and highlights their use to study OC sourcing in mountainous river systems.
  • Preprint
    Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin)
    ( 2011-12-01) Lupker, Maarten ; France-Lanord, Christian ; Galy, Valier ; Lave, Jerome ; Gaillardet, Jerome ; Gajurel, Ananta Prasad ; Guilmette, Caroline ; Rahman, Mustafizur ; Singh, Sunil Kumar ; Sinha, Rajiv
    We present an extensive river sediment dataset covering the Ganga basin from the Himalayan front downstream to the Ganga mainstream in Bangladesh. These sediments were mainly collected over several monsoon seasons and include depth profiles of suspended particles in the river water column. Mineral sorting is the first order control on the chemical composition of river sediments. Taking into account this variability we show that sediments become significantly depleted in mobile elements during their transit through the floodplain. By comparing sediments sampled at the Himalayan front with sediments from the Ganga mainstream in Bangladesh it is possible to budget weathering in the floodplain. Assuming a steady state weathering regime in the floodplain, the weathering of Himalayan sediments in the Gangetic floodplain releases ca. (189 ± 92)109 and (69 ± 22)109 moles/yr of carbonate bound Ca and Mg to the dissolved load, respectively. Silicate weathering releases (53 ± 18)109 and (42 ± 13)109 moles/yr of Na and K while the release of silicate Mg and Ca is substantially lower, between ca. 0 and 20109 moles/yr. Additionally, we show that sediment hydration, [H2O+], is a sensitive tracer of silicate weathering that can be used in continental detrital environments, such as the Ganga basin. Both [H2O+] content and the D/H isotopic composition of sediments increases during floodplain transfer in response to mineral hydrolysis and neoformations associated to weathering reactions. By comparing the chemical composition of river sediments across the floodplain with the composition of the eroded Himalayan source rocks, we suggest that the floodplain is the dominant location of silicate weathering for Na, K and [H2O+]. Overall this work emphasizes the role of the Gangetic floodplain in weathering Himalayan sediments. It also demonstrates how detrital sediments can be used as weathering tracers if mineralogical and chemical sorting effects are properly taken into account.
  • Article
    Limited presence of permafrost dissolved organic matter in the Kolyma River, Siberia revealed by ramped oxidation
    (American Geophysical Union, 2021-07-09) Rogers, Jennifer A. ; Galy, Valier ; Kellerman, Anne M. ; Chanton, Jeffrey P. ; Zimov, Nikita S. ; Spencer, Robert G. M.
    Increasing Arctic temperatures are thawing permafrost soils and liberating ancient organic matter, but the fate of this material remains unclear. Thawing of permafrost releases dissolved organic matter (DOM) into fluvial networks. Unfortunately, tracking this material in Arctic rivers such as the Kolyma River in Siberia has proven challenging due to its high biodegradability. Here, we evaluate late summer abruptly thawed yedoma permafrost dissolved organic carbon (DOC) inputs from Duvannyi Yar. We implemented ultrahigh-resolution mass spectrometry alongside ramped pyrolysis oxidation (RPO) and isotopic analyses. These approaches offer insight into DOM chemical composition and DOC radiocarbon values of thermochemical components for a permafrost thaw stream, the Kolyma River, and their biodegraded counterparts (n = 4). The highly aliphatic molecular formula found in undegraded permafrost DOM contrasted with the comparatively aliphatic-poor formula of Kolyma River DOM, represented by an 8.9% and 2.6% relative abundance, respectively, suggesting minimal inputs of undegraded permafrost DOM in the river. RPO radiocarbon fractions of Kolyma River DOC exhibited no “hidden” aged component indicative of permafrost influence. Thermostability analyses suggested that there was limited biodegraded permafrost DOC in the Kolyma River, in part determined by the formation of high-activation energy (thermally stable) biodegradation components in permafrost DOM that were lacking in the Kolyma River. A mixing model based on thermostability and radiocarbon allowed us to estimate a maximum input of between 0.8% and 7.7% of this Pleistocene-aged permafrost to the Kolyma River DOC. Ultimately, our findings highlight that export of modern terrestrial DOC currently overwhelms any permafrost DOC inputs in the Kolyma River.
  • Article
    Prominent bacterial heterotrophy and sources of 13C-depleted fatty acids to the interior Canada Basin
    (Copernicus Publications on behalf of the European Geosciences Union, 2013-11-07) Shah, Sunita R. ; Griffith, David R. ; Galy, Valier ; McNichol, Ann P. ; Eglinton, Timothy I.
    In recent decades, the Canada Basin of the Arctic Ocean has experienced rapidly decreasing summer sea ice coverage and freshening of surface waters. It is unclear how these changes translate to deeper waters, particularly as our baseline understanding of organic carbon cycling in the deep basin is quite limited. In this study, we describe full-depth profiles of the abundance, distribution and carbon isotopic composition of fatty acids from suspended particulate matter at a seasonally ice-free station and a semi-permanently ice-covered station. Fatty acids, along with suspended particulate organic carbon (POC), are more concentrated and 13C-enriched under ice cover than in ice-free waters. But this influence, apparent at 50 m depth, does not propagate downward below 150 m depth, likely due to the weak biological pump in the central Canada Basin. Branched fatty acids have δ13C values that are similar to suspended POC at all depths and are more 13C-enriched than even-numbered saturated fatty acids at depths above 3000 m. These are likely to be produced in situ by heterotrophic bacteria incorporating organic carbon that is isotopically similar to total suspended POC. Below surface waters, there is also the suggestion of a source of saturated even-numbered fatty acids which could represent contributions from laterally advected organic carbon and/or from chemoautotrophic bacteria. At 3000 m depth and below, a greater relative abundance of long-chain (C20–24), branched and unsaturated fatty acids is consistent with a stronger influence of re-suspended sedimentary organic carbon. At these deep depths, two individual fatty acids (C12 and iso-C17) are significantly depleted in 13C, allowing for the possibility that methane oxidizing bacteria contribute fatty acids, either directly to suspended particulate matter or to shallow sediments that are subsequently mobilized and incorporated into suspended particulate matter within the deep basin.