Pelletier
James F.
Pelletier
James F.
No Thumbnail Available
2 results
Search Results
Now showing
1 - 2 of 2
-
ArticleCo-movement of astral microtubules, organelles and F-actin by dynein and actomyosin forces in frog egg cytoplasm(eLife Sciences Publications, 2020-12-07) Pelletier, James F. ; Field, Christine M. ; Fürthauer, Sebastian ; Sonnett, Matthew ; Mitchison, Timothy J.How bulk cytoplasm generates forces to separate post-anaphase microtubule (MT) asters in Xenopus laevis and other large eggs remains unclear. Previous models proposed that dynein-based, inward organelle transport generates length-dependent pulling forces that move centrosomes and MTs outwards, while other components of cytoplasm are static. We imaged aster movement by dynein and actomyosin forces in Xenopus egg extracts and observed outward co-movement of MTs, endoplasmic reticulum (ER), mitochondria, acidic organelles, F-actin, keratin, and soluble fluorescein. Organelles exhibited a burst of dynein-dependent inward movement at the growing aster periphery, then mostly halted inside the aster, while dynein-coated beads moved to the aster center at a constant rate, suggesting organelle movement is limited by brake proteins or other sources of drag. These observations call for new models in which all components of the cytoplasm comprise a mechanically integrated aster gel that moves collectively in response to dynein and actomyosin forces.
-
ArticleSpatial variation of microtubule depolymerization in large asters(American Society for Cell Biology, 2021-04-19) Ishihara, Keisuke ; Decker, Franziska ; Caldas, Paulo ; Pelletier, James F. ; Loose, Martin ; Brugués, Jan ; Mitchison, Timothy J.Microtubule plus-end depolymerization rate is a potentially important target of physiological regulation, but it has been challenging to measure, so its role in spatial organization is poorly understood. Here we apply a method for tracking plus ends based on time difference imaging to measure depolymerization rates in large interphase asters growing in Xenopus egg extract. We observed strong spatial regulation of depolymerization rates, which were higher in the aster interior compared with the periphery, and much less regulation of polymerization or catastrophe rates. We interpret these data in terms of a limiting component model, where aster growth results in lower levels of soluble tubulin and microtubule-associated proteins (MAPs) in the interior cytosol compared with that at the periphery. The steady-state polymer fraction of tubulin was ∼30%, so tubulin is not strongly depleted in the aster interior. We propose that the limiting component for microtubule assembly is a MAP that inhibits depolymerization, and that egg asters are tuned to low microtubule density.