Searle Roger C.

No Thumbnail Available
Last Name
Searle
First Name
Roger C.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre
    (Nature Publishing Group, 2012-01-10) Connelly, Douglas P. ; Copley, Jonathan T. ; Murton, Bramley J. ; Stansfield, Kate ; Tyler, Paul A. ; German, Christopher R. ; Van Dover, Cindy L. ; Amon, Diva ; Furlong, Maaten ; Grindlay, Nancy ; Hayman, Nicholas W. ; Huhnerbach, Veit ; Judge, Maria ; Le Bas, Tim ; McPhail, Stephen ; Meier, Alexandra ; Nakamura, Ko-ichi ; Nye, Verity ; Pebody, Miles ; Pedersen, Rolf B. ; Plouviez, Sophie ; Sands, Carla M. ; Searle, Roger C. ; Stevenson, Peter ; Taws, Sarah ; Wilcox, Sally
    The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with > 400 °C venting from the world’s deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.
  • Article
    Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N
    (American Geophysical Union, 2011-07-19) Blackman, Donna K. ; Ildefonse, Benoit ; John, Barbara E. ; Ohara, Y. ; Miller, D. J. ; Abe, Natsue ; Abratis, M. ; Andal, E. S. ; Andreani, Muriel ; Awaji, S. ; Beard, J. S. ; Brunelli, Daniele ; Charney, A. B. ; Christie, D. M. ; Collins, John A. ; Delacour, A. G. ; Delius, H. ; Drouin, M. ; Einaudi, F. ; Escartin, Javier E. ; Frost, B. R. ; Fruh-Green, Gretchen L. ; Fryer, P. B. ; Gee, Jeffrey S. ; Grimes, C. B. ; Halfpenny, A. ; Hansen, H.-E. ; Harris, Amber C. ; Tamura, A. ; Hayman, Nicholas W. ; Hellebrand, Eric ; Hirose, T. ; Hirth, Greg ; Ishimaru, S. ; Johnson, Kevin T. M. ; Karner, G. D. ; Linek, M. ; MacLeod, Christopher J. ; Maeda, J. ; Mason, Olivia U. ; McCaig, A. M. ; Michibayashi, K. ; Morris, Antony ; Nakagawa, T. ; Nozaka, Toshio ; Rosner, Martin ; Searle, Roger C. ; Suhr, G. ; Tominaga, Masako ; von der Handt, A. ; Yamasaki, T. ; Zhao, Xixi
    Expeditions 304 and 305 of the Integrated Ocean Drilling Program cored and logged a 1.4 km section of the domal core of Atlantis Massif. Postdrilling research results summarized here constrain the structure and lithology of the Central Dome of this oceanic core complex. The dominantly gabbroic sequence recovered contrasts with predrilling predictions; application of the ground truth in subsequent geophysical processing has produced self-consistent models for the Central Dome. The presence of many thin interfingered petrologic units indicates that the intrusions forming the domal core were emplaced over a minimum of 100–220 kyr, and not as a single magma pulse. Isotopic and mineralogical alteration is intense in the upper 100 m but decreases in intensity with depth. Below 800 m, alteration is restricted to narrow zones surrounding faults, veins, igneous contacts, and to an interval of locally intense serpentinization in olivine-rich troctolite. Hydration of the lithosphere occurred over the complete range of temperature conditions from granulite to zeolite facies, but was predominantly in the amphibolite and greenschist range. Deformation of the sequence was remarkably localized, despite paleomagnetic indications that the dome has undergone at least 45° rotation, presumably during unroofing via detachment faulting. Both the deformation pattern and the lithology contrast with what is known from seafloor studies on the adjacent Southern Ridge of the massif. There, the detachment capping the domal core deformed a 100 m thick zone and serpentinized peridotite comprises ∼70% of recovered samples. We develop a working model of the evolution of Atlantis Massif over the past 2 Myr, outlining several stages that could explain the observed similarities and differences between the Central Dome and the Southern Ridge.