Bertin Matthew

No Thumbnail Available
Last Name
Bertin
First Name
Matthew
ORCID
0000-0002-2200-0277

Search Results

Now showing 1 - 5 of 5
  • Dataset
    Pseudo-nitzschia spp. cell counts, nutrients water temperature and salinity, and concentrations of the toxin domoic acid from weekly samples and offshore cruises with the Northeast U.S. Shelf (NES) Long-Term Ecological Research (LTER)
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-29) Jenkins, Bethany D. ; Bertin, Matthew
    This dataset is related to approximately weekly sampling of Narragansett Bay, RI in tandem with the University of Rhode Island (URI) Graduate School of Oceanography (GSO) Long-Term Plankton Time Series (LTPTS) and Fish Trawl Survey to examine species assemblages and toxicity of the diatom genus Pseudo-nitzschia spp. This includes nutrient concentrations, cell counts, water temperature and salinity, and concentrations of the toxin domoic acid from these weekly samples and more, including offshore cruises with the Northeast U.S. Shelf (NES) Long-Term Ecological Research (LTER). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/847448
  • Dataset
    Amplicon sequence variants (ASVs) recovered from samples and their related identification as Pseudo-nitzschia taxa and the methods used
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-29) Jenkins, Bethany D. ; Bertin, Matthew
    This dataset is related to approximately weekly sampling of Narragansett Bay, RI in tandem with the University of Rhode Island (URI) Graduate School of Oceanography (GSO) Long-Term Plankton Time Series (LTPTS) and Fish Trawl Survey to examine species assemblages and toxicity of the diatom genus Pseudo-nitzschia spp. This dataset includes the amplicon sequence variants (ASVs) recovered from samples and their related identification as Pseudo-nitzschia taxa and the methods used related to the Sterling et al manuscript. These data are connected to NCBI Bioproject PRJNA690940 & GenBank Accession Numbers MW447658 – MW447770, which will be released January 2025 or when the associated manuscript is published, whichever occurs first. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/847469
  • Dataset
    Presence or absence of amplicon sequence variants (ASVs) recovered from samples which are described in DATASET 01, Pseudo-nitzschia spp. from weekly samples and offshore cruises with the Northeast U.S. Shelf (NES) Long-Term Ecological Research (LTER)
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-29) Jenkins, Bethany D. ; Bertin, Matthew
    This dataset is related to approximately weekly sampling of Narragansett Bay, RI in tandem with the University of Rhode Island (URI) Graduate School of Oceanography (GSO) Long-Term Plankton Time Series (LTPTS) and Fish Trawl Survey to examine species assemblages and toxicity of the diatom genus Pseudo-nitzschia spp. This dataset includes the presence or absence of amplicon sequence variants (ASVs) recovered from samples which are described in DATASET 01. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/847495
  • Article
    Emerging harmful algal blooms caused by distinct seasonal assemblages of a toxic diatom
    (Association for the Sciences of Limnology and Oceanography, 2022-10-07) Sterling, Alexa R. ; Kirk, Riley D. ; Bertin, Matthew J. ; Rynearson, Tatiana A. ; Borkman, David G. ; Caponi, Marissa C. ; Carney, Jessica ; Hubbard, Katherine A. ; King, Meagan A. ; Maranda, Lucie ; McDermith, Emily J. ; Santos, Nina R. ; Strock, Jacob P. ; Tully, Erin M. ; Vaverka, Samantha B. ; Wilson, Patrick D. ; Jenkins, Bethany D.
    Diatoms in the Pseudo‐nitzschia genus produce the neurotoxin domoic acid. Domoic acid bioaccumulates in shellfish, causing illness in humans and marine animals upon ingestion. In 2017, high domoic acid levels in shellfish meat closed shellfish harvest in Narragansett Bay, Rhode Island for the first and only time in history, although abundant Pseudo‐nitzschia have been observed for over 60 years. To investigate whether an environmental factor altered endemic Pseudo‐nitzschia physiology or new domoic acid‐producing strain(s) were introduced to Narragansett Bay, we conducted weekly sampling from 2017 to 2019 and compared closure samples. Plankton‐associated domoic acid was quantified by LC‐MS/MS and Pseudo‐nitzschia spp. were identified using a taxonomically improved high‐throughput rDNA sequencing approach. Comparison with environmental data revealed a detailed understanding of domoic acid dynamics and seasonal multi‐species assemblages. Plankton‐associated domoic acid was low throughout 2017–2019, but recurred in fall and early summer maxima. Fall domoic acid maxima contained known toxic species as well as a novel Pseudo‐nitzschia genotype. Summer domoic acid maxima included fewer species but also known toxin producers. Most 2017 closure samples contained the particularly concerning toxic species, P. australis, which also appeared infrequently during 2017–2019. Recurring Pseudo‐nitzschia assemblages were driven by seasonal temperature changes, and plankton‐associated domoic acid correlated with low dissolved inorganic nitrogen. Thus, the Narragansett Bay closures were likely caused by both resident assemblages that become toxic depending on nutrient status as well as the episodic introductions of toxic species from oceanographic and climatic shifts.
  • Article
    Spatial and temporal resolution of cyanobacterial bloom chemistry reveals an open-ocean trichodesmium thiebautii as a talented producer of specialized metabolites
    (American Chemical Society, 2024-05-17) Via, Christopher W. ; Grauso, Laura ; McManus, Kelly M. ; Kirk, Riley D. ; Kim, Andrew M. ; Webb, Eric A. ; Held, Noelle A. ; Saito, Mak A. ; Scarpato, Silvia ; Zimba, Paul V. ; Moeller, Peter D. R. ; Mangoni, Alfonso ; Bertin, Matthew J.
    While the ecological role that Trichodesmium sp. play in nitrogen fixation has been widely studied, little information is available on potential specialized metabolites that are associated with blooms and standing stock Trichodesmium colonies. While a collection of biological material from a T. thiebautii bloom event from North Padre Island, Texas, in 2014 indicated that this species was a prolific producer of chlorinated specialized metabolites, additional spatial and temporal resolution was needed. We have completed these metabolite comparison studies, detailed in the current report, utilizing LC-MS/MS-based molecular networking to visualize and annotate the specialized metabolite composition of these Trichodesmium blooms and colonies in the Gulf of Mexico (GoM) and other waters. Our results showed that T. thiebautii blooms and colonies found in the GoM have a remarkably consistent specialized metabolome. Additionally, we isolated and characterized one new macrocyclic compound from T. thiebautii, trichothilone A (1), which was also detected in three independent cultures of T. erythraeum. Genome mining identified genes predicted to synthesize certain functional groups in the T. thiebautii metabolites. These results provoke intriguing questions of how these specialized metabolites affect Trichodesmium ecophysiology, symbioses with marine invertebrates, and niche development in the global oligotrophic ocean.