Winckler Gisela

No Thumbnail Available
Last Name
Winckler
First Name
Gisela
ORCID
0000-0001-8718-2684

Search Results

Now showing 1 - 3 of 3
  • Article
    Orbital- and millennial-scale variability in northwest African dust emissions over the past 67,000 years
    (American Geophysical Union, 2021-12-07) Kinsley, Christopher W. ; Bradtmiller, Louisa I. ; McGee, David ; Galgay, Michael ; Stuut, Jan-Berend W. ; Tjallingii, Rik ; Winckler, Gisela ; deMenocal, Peter B.
    Reconstructions of aeolian dust flux to West African margin sediments can be used to explore changing atmospheric circulation and hydroclimate over North Africa on millennial to orbital timescales. Here, we extend West African margin dust flux records back to 37 ka in a transect of sites from 19° to 27°N, and back to 67 ka at Ocean Drilling Program (ODP) Hole 658C, in order to explore the interplay of orbital and high-latitude forcings on North African climate and make quantitative estimates of dust flux during the core of the Last Glacial Maximum (LGM). The ODP 658C record shows a Green Sahara interval from 60 to 50 ka during a time of high Northern Hemisphere summer insolation, with dust fluxes similar to levels during the early Holocene African Humid Period, and an abrupt peak in flux during Heinrich event 5a (H5a). Dust fluxes increase from 50 to 35 ka while the high-latitude Northern Hemisphere cools, with peaks in dust flux associated with North Atlantic cool events. From 35 ka through the LGM dust deposition decreases in all cores, and little response is observed to low-latitude insolation changes. Dust fluxes at sites from 21° to 27°N were near late Holocene levels during the LGM time slice, suggesting a more muted LGM response than observed from mid-latitude dust sources. Records along the northwest African margin suggest important differences in wind responses during different stadials, with maximum dust flux anomalies centered south of 20°N during H1 and north of 20°N during the Younger Dryas.
  • Preprint
    Geochemical tracers of extraterrestrial matter in sediments
    ( 2016-05) Peucker-Ehrenbrink, Bernhard ; Ravizza, Gregory E. ; Winckler, Gisela
    Every year, tens of thousands of tons of cosmic dust accumulate at the Earth’s surface, representing a continuation of the accretion process that started 4.57 billion years ago. The unique geochemical properties of these materials, compared to the Earth’s surface, render them excellent tracers of Solar System, atmospheric, oceanographic, and geologic processes. These processes can be recovered from the records preserved in marine and terrestrial sediments, including snow and ice. We review evidence from these natural archives to illuminate temporal and spatial variations in the flux and composition of extraterrestrial material to Earth, as well as the terrestrial processes that affect the distribution of extraterrestrial tracers in sediments.
  • Article
    230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean
    (John Wiley & Sons, 2020-01-27) Costa, Kassandra M. ; Hayes, Christopher T. ; Anderson, Robert F. ; Pavia, Frank ; Bausch, Alexandra ; Deng, Feifei ; Dutay, Jean-Claude ; Geibert, Walter ; Heinze, Christoph ; Henderson, Gideon M. ; Hillaire‐Marcel, Claude ; Hoffmann, Sharon S. ; Jaccard, Samuel L. ; Jacobel, Allison W. ; Kienast, Stephanie S. ; Kipp, Lauren ; Lerner, Paul ; Lippold, Jörg ; Lund, David C. ; Marcantonio, Franco ; McGee, David ; McManus, Jerry F. ; Mekik, Figen ; Middleton, Jennifer L. ; Missiaen, Lise ; Not, Christelle ; Pichat, Sylvain ; Robinson, Laura F. ; Rowland, George H. ; Roy-Barman, Matthieu ; Tagliabue, Alessandro ; Torfstein, Adi ; Winckler, Gisela ; Zhou, Yuxin
    230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).