Embley Robert W.

No Thumbnail Available
Last Name
Embley
First Name
Robert W.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Axial Seamount
    (Oceanography Society, 2010-03) Chadwick, William W. ; Butterfield, David A. ; Embley, Robert W. ; Tunnicliffe, Verena ; Huber, Julie A. ; Nooner, Scott L. ; Clague, David A.
    Axial Seamount is a hotspot volcano superimposed on the Juan de Fuca Ridge (JdFR) in the Northeast Pacific Ocean. Due to its robust magma supply, it rises ~ 800 m above the rest of JdFR and has a large elongate summit caldera with two rift zones that parallel and overlap with adjacent segments of the spreading center.
  • Article
    Waning magmatic activity along the Southern Explorer Ridge revealed through fault restoration of rift topography
    (John Wiley & Sons, 2013-05-29) Deschamps, Anne ; Tivey, Maurice A. ; Chadwick, William W. ; Embley, Robert W.
    We combine high-resolution bathymetry acquired using the Autonomous Underwater Vehicle ABE with digital seafloor imagery collected using the remotely operated vehicle ROPOS across the axial valley of the Southern Explorer Ridge (SER) to infer the recent volcanic and tectonic processes. The SER is an intermediate spreading ridge located in the northeast Pacific. It hosts the Magic Mountain hydrothermal vent. We reconstruct the unfaulted seafloor terrain at SER based on calculations of the vertical displacement field and fault parameters. The vertical changes between the initial and the restored topographies reflect the integrated effects of volcanism and tectonism on relief-forming processes over the last 11,000–14,000 years. The restored topography indicates that the axial morphology evolved from a smooth constructional dome >500 m in diameter, to a fault-bounded graben, ~500 m wide and 30–70 m deep. This evolution has been accompanied by changes in eruptive rate, with deposition of voluminous lobate and sheet flows when the SER had a domed morphology, and limited-extent low-effusion rate pillow eruptions during graben development. Most of the faults shaping the present axial valley postdate the construction of the dome. Our study supports a model of cyclic volcanism at the SER with periods of effusive eruptions flooding the axial rift, centered on the broad plateau at the summit of the ridge, followed by a decrease in eruptive activity and a subsequent dominance of tectonic processes, with minor low-effusion rate eruptions confined to the axial graben. The asymmetric shape of the axial graben supports an increasing role of extensional processes, with a component of simple shear in the spreading processes.
  • Article
    Eruptive modes and hiatus of volcanism at West Mata seamount, NE Lau basin : 1996–2012
    (John Wiley & Sons, 2014-10-31) Embley, Robert W. ; Merle, Susan G. ; Baker, Edward T. ; Rubin, Kenneth H. ; Lupton, John E. ; Resing, Joseph A. ; Dziak, Robert P. ; Lilley, Marvin D. ; Chadwick, William W. ; Shank, Timothy M. ; Greene, Ronald ; Walker, Sharon L. ; Haxel, Joseph H. ; Olson, Eric J. ; Baumberger, Tamara
    We present multiple lines of evidence for years to decade-long changes in the location and character of volcanic activity at West Mata seamount in the NE Lau basin over a 16 year period, and a hiatus in summit eruptions from early 2011 to at least September 2012. Boninite lava and pyroclasts were observed erupting from its summit in 2009, and hydroacoustic data from a succession of hydrophones moored nearby show near-continuous eruptive activity from January 2009 to early 2011. Successive differencing of seven multibeam bathymetric surveys of the volcano made in the 1996–2012 period reveals a pattern of extended constructional volcanism on the summit and northwest flank punctuated by eruptions along the volcano's WSW rift zone (WSWRZ). Away from the summit, the volumetrically largest eruption during the observational period occurred between May 2010 and November 2011 at ∼2920 m depth near the base of the WSWRZ. The (nearly) equally long ENE rift zone did not experience any volcanic activity during the 1996–2012 period. The cessation of summit volcanism recorded on the moored hydrophone was accompanied or followed by the formation of a small summit crater and a landslide on the eastern flank. Water column sensors, analysis of gas samples in the overlying hydrothermal plume and dives with a remotely operated vehicle in September 2012 confirmed that the summit eruption had ceased. Based on the historical eruption rates calculated using the bathymetric differencing technique, the volcano could be as young as several thousand years.
  • Article
    Volcanic eruptions in the deep sea
    (The Oceanography Society, 2012-03) Rubin, Kenneth H. ; Soule, Samuel A. ; Chadwick, William W. ; Fornari, Daniel J. ; Clague, David A. ; Embley, Robert W. ; Baker, Edward T. ; Perfit, Michael R. ; Caress, David W. ; Dziak, Robert P.
    Volcanic eruptions are important events in Earth's cycle of magma generation and crustal construction. Over durations of hours to years, eruptions produce new deposits of lava and/or fragmentary ejecta, transfer heat and magmatic volatiles from Earth's interior to the overlying air or seawater, and significantly modify the landscape and perturb local ecosystems. Today and through most of geological history, the greatest number and volume of volcanic eruptions on Earth have occurred in the deep ocean along mid-ocean ridges, near subduction zones, on oceanic plateaus, and on thousands of mid-plate seamounts. However, deep-sea eruptions (> 500 m depth) are much more difficult to detect and observe than subaerial eruptions, so comparatively little is known about them. Great strides have been made in eruption detection, response speed, and observational detail since the first recognition of a deep submarine eruption at a mid-ocean ridge 25 years ago. Studies of ongoing or recent deep submarine eruptions reveal information about their sizes, durations, frequencies, styles, and environmental impacts. Ultimately, magma formation and accumulation in the upper mantle and crust, plus local tectonic stress fields, dictate when, where, and how often submarine eruptions occur, whereas eruption depth, magma composition, conditions of volatile segregation, and tectonic setting determine submarine eruption style.