Leng
Melanie J.
Leng
Melanie J.
No Thumbnail Available
Search Results
Now showing
1 - 6 of 6
-
PreprintSilicon isotopes in Antarctic sponges : an interlaboratory comparison( 2010-06-08) Hendry, Katharine R. ; Leng, Melanie J. ; Robinson, Laura F. ; Sloane, Hilary J. ; Blusztajn, Jerzy S. ; Rickaby, Rosalind E. M. ; Georg, R. Bastian ; Halliday, Alex N.Cycling of deep-water silicon (Si) within the Southern Ocean, and its transport into other ocean basins, may be an important player in the uptake of atmospheric carbon, and global climate. Recent work has shown that the Si isotope (denoted by δ29Si or δ30Si) composition of deep-sea sponges reflects the availability of dissolved Si during growth, and is a potential proxy for past deep and intermediate water silicic acid concentrations. As with any geochemical tool, it is essential to ensure analytical precision and accuracy, and consistency between methodologies and laboratories. Analytical bias may exist between laboratories, and sponge material may have matrix effects leading to offsets between samples and standards. Here, we report an interlaboratory evaluation of Si isotopes in Antarctic and subAntarctic sponges. We review independent methods for measuring Si isotopes in sponge spicules. Our results show that separate subsamples of non-homogenised sponges measured by three methods yield isotopic values within analytical error for over 80% of specimens. The relationship between δ29Si and δ30Si in sponges is consistent with kinetic fractionation during biomineralisation. Sponge Si isotope analyses show potential as palaeoceaongraphic archives, and we suggest Southern Ocean sponge material would form a useful additional reference standard for future spicule analyses.
-
ArticleThe freshwater system west of the Antarctic Peninsula : spatial and temporal changes(American Meteorological Society, 2013-03-01) Meredith, Michael P. ; Venables, Hugh J. ; Clarke, Andrew ; Ducklow, Hugh W. ; Erickson, Matthew ; Leng, Melanie J. ; Lenaerts, Jan T. M. ; van den Broeke, Michiel R.Climate change west of the Antarctic Peninsula is the most rapid of anywhere in the Southern Hemisphere, with associated changes in the rates and distributions of freshwater inputs to the ocean. Here, results from the first comprehensive survey of oxygen isotopes in seawater in this region are used to quantify spatial patterns of meteoric water (glacial discharge and precipitation) separately from sea ice melt. High levels of meteoric water are found close to the coast, due to orographic effects on precipitation and strong glacial discharge. Concentrations decrease offshore, driving significant southward geostrophic flows (up to ~30 cm s−1). These produce high meteoric water concentrations at the southern end of the sampling grid, where collapse of the Wilkins Ice Shelf may also have contributed. Sea ice melt concentrations are lower than meteoric water and patchier because of the mobile nature of the sea ice itself. Nonetheless, net sea ice production in the northern part of the sampling grid is inferred; combined with net sea ice melt in the south, this indicates an overall southward ice motion. The survey is contextualized temporally using a decade-long series of isotope data from a coastal Antarctic Peninsula site. This shows a temporal decline in meteoric water in the upper ocean, contrary to expectations based on increasing precipitation and accelerating deglaciation. This is driven by the increasing occurrence of deeper winter mixed layers and has potential implications for concentrations of trace metals supplied to the euphotic zone by glacial discharge. As the regional freshwater system evolves, the continuing isotope monitoring described here will elucidate the ongoing impacts on climate and the ecosystem.
-
ArticleIsotopic characterization of water masses in the Southeast Pacific Region: paleoceanographic implications(American Geophysical Union, 2021-12-23) Reyes-Macaya, Dharma ; Hoogakker, Babette ; Martínez-Méndez, Gema ; Llanillo, Pedro J. ; Grasse, Patricia ; Mohtadi, Mahyar ; Mix, Alan C. ; Leng, Melanie J. ; Struck, Ulrich ; McCorkle, Daniel C. ; Troncoso, Macarena ; Gayo, Eugenia M. ; Lange, Carina B. ; Farias, Laura ; Carhuapoma, Wilson ; Graco, Michelle ; Cornejo-D’Ottone, Marcela ; De Pol-Holz, Ricardo ; Fernandez, Camila ; Narváez, Diego ; Vargas, Cristian A. ; García-Araya, Francisco ; Hebbeln, DierkIn this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW, and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW, and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
-
ArticleEvidence of a South Asian proto-monsoon during the Oligocene-Miocene transition(American Geophysical Union, 2021-09-04) Beasley, Charlotte ; Kender, Sev ; Giosan, Liviu ; Bolton, Clara T. ; Anand, Pallavi ; Leng, Melanie J. ; Nilsson-Kerr, Katrina ; Ullmann, Clemens Vinzenz ; Hesselbo, Stephen P. ; Littler, KateThe geological history of the South Asian monsoon (SAM) before the Pleistocene is not well-constrained, primarily due to a lack of available continuous sediment archives. Previous studies have noted an intensification of SAM precipitation and atmospheric circulation during the middle Miocene (∼14 Ma), but no records are available to test how the monsoon changed prior to this. In order to improve our understanding of monsoonal evolution, geochemical and sedimentological data were generated for the Oligocene-early Miocene (30–20 Ma) from Indian National Gas Hydrate Expedition 01 Site NGHP-01-01A in the eastern Arabian Sea, at 2,674 m water depth. We find the initial glaciation phase (23.7–23.0 Ma) of the Oligocene-Miocene transition (OMT) to be associated with an increase in water column ventilation and water mass mixing, suggesting an increase in winter monsoon type atmospheric circulation, possibly driven by a relative southward shift of the intertropical convergence zone. During the latter part of the OMT, or “deglaciation” phase (23.0–22.7 Ma), a long-term decrease in Mn (suggestive of deoxygenation), increase in Ti/Ca and dissolution of the biogenic carbonate fraction suggest an intensification of a proto-summer SAM system, characterized by the formation of an oxygen minimum zone in the eastern Arabian Sea and a relative increase of terrigenous material delivered by runoff to the site. With no evidence at this site for an active SAM prior to the OMT we suggest that changes in orbital parameters, as well as possibly changing Tethyan/Himalayan tectonics, caused this step change in the proto-monsoon system at this intermediate-depth site.
-
ArticleDiatom silicon isotopes as a proxy for silicic acid utilisation : a Southern Ocean core top calibration(Elsevier, 2012-08-11) Egan, Katherine E. ; Rickaby, Rosalind E. M. ; Leng, Melanie J. ; Hendry, Katharine R. ; Hermoso, Michael ; Sloane, Hilary J. ; Bostock, Helen ; Halliday, Alex N.Despite a growing body of work that uses diatom δ30Si to reconstruct past changes in silicic acid utilisation, few studies have focused on calibrating core top data with modern oceanographic conditions. In this study, a microfiltration technique is used to divide Southern Ocean core top silica into narrow size ranges, separating components such as radiolaria, sponge spicules and clay minerals from diatoms. Silicon isotope analysis of these components demonstrates that inclusion of small amounts of non-diatom material can significantly offset the measured from the true diatom δ30Si. Once the correct size fraction is selected (generally 2–20 μm), diatom δ30Si shows a strong negative correlation with surface water silicic acid concentration (R2 = 0.92), highly supportive of the qualitative use of diatom δ30Si as a proxy for silicic acid utilisation. The core top diatom δ30Si matches well with mixed layer filtered diatom δ30Si from published in situ studies, suggesting little to no effect of either dissolution on export through the water column, or early diagenesis, on diatom δ30Si in sediments from the Southern Ocean. However, the core top diatom δ30Si shows a poor fit to simple Rayleigh or steady state models of the Southern Ocean when a single source term is used. The data can instead be described by these models only when variations in the initial conditions of upwelled silicic acid concentration and δ30Si are taken into account, a caveat which may introduce some error into quantitative reconstructions of past silicic acid utilisation from diatom δ30Si.
-
ArticleClumped isotope composition of cold-water corals : a role for vital effects?(Elsevier, 2016-02-02) Spooner, Peter T. ; Guo, Weifu ; Robinson, Laura F. ; Thiagarajan, Nivedita ; Hendry, Katharine R. ; Rosenheim, Brad E. ; Leng, Melanie J.The carbonate clumped isotope thermometer is a promising tool for determining past ocean temperatures. It is based on the temperature dependence of rare isotopes ‘clumping’ into the same carbonate ion group in the carbonate mineral lattice. The extent of this clumping effect is independent of the isotope composition of the water from which carbonate precipitates, providing unique advantages over many other paleotemperature proxies. Existing calibrations of this thermometer in cold-water and warm-water corals suggest clumped isotope ‘vital effects’ are negligible in cold-water corals but may be significant in warm-water corals. Here, we test the calibration of the carbonate clumped isotope thermometer in cold-water corals with a recently collected and well characterised sample set spanning a range of coral genera (Balanophyllia, Caryophyllia, Dasmosmilia, Desmophyllum, Enallopsammia and Javania). The clumped isotope compositions (Δ47) of these corals exhibit systematic dependences on their growth temperatures, confirming the basis of the carbonate clumped isotope thermometer. However, some cold-water coral genera show Δ47 values that are higher than the expected equilibrium values by up to 0.05‰ (equivalent to underestimating temperature by ∼9 °C) similar to previous findings for some warm-water corals. This finding suggests that the vital effects affecting corals Δ47 are common to both warm- and cold-water corals. By comparison with models of the coral calcification process we suggest that the clumped isotope offsets in these genera are related to the kinetic isotope effects associated with CO2 hydration/hydroxylation reactions in the corals’ calcifying fluid. Our findings complicate the use of the carbonate clumped isotope thermometer in corals, but suggest that species- or genus-specific calibrations could be useful for the future application of this paleotemperature proxy.