Dunlea Ann G.

No Thumbnail Available
Last Name
First Name
Ann G.

Search Results

Now showing 1 - 8 of 8
  • Article
    Pliocene expansion of C-4 vegetation in the core monsoon zone on the Indian Peninsula
    (European Geosciences Union, 2020-12-23) Dunlea, Ann G. ; Giosan, Liviu ; Huang, Yongsong
    The expansion of C4 vegetation during the Neogene was one of the largest reorganizations of Earth's terrestrial biome. Once thought to be globally synchronous in the late Miocene, site-specific studies have revealed differences in the timing of the expansion and suggest that local conditions play a substantial role. Here, we examine the expansion of C4 vegetation on the Indian Peninsula since the late Miocene by constructing a ∼6-million-year paleorecord with marine sediment from the Bay of Bengal at Site U1445, drilled during International Ocean Discovery Program Expedition 353. Analyses of element concentrations indicate that the marine sediment originates from the Mahanadi River in the Core Monsoon Zone (CMZ) of the Indian Peninsula. Hydrogen isotopes of the fatty acids of leaf waxes reveal an overall decrease in the CMZ precipitation since the late Miocene. Carbon isotopes of the leaf wax fatty acids suggest C4 vegetation on the Indian Peninsula existed before the end of the Miocene but expanded to even higher abundances during the mid-Pliocene to mid-Pleistocene (∼3.5 to 1.5 million years ago). Similar to the CMZ on the Indian Peninsula, a Pliocene expansion or re-expansion has previously been observed in northwest Australia and in East Africa, suggesting that these tropical ecosystems surrounding the Indian Ocean remained highly sensitive to changes in hydroclimate after the initial spread of C4 plants in late Miocene.
  • Article
    The contribution of water radiolysis to marine sedimentary life
    (Nature Research, 2021-02-26) Sauvage, Justine ; Flinders, Ashton F. ; Spivack, Arthur J. ; Pockalny, Robert ; Dunlea, Ann G. ; Anderson, Chloe H. ; Smith, David C. ; Murray, Richard W. ; D'Hondt, Steven
    Water radiolysis continuously produces H2 and oxidized chemicals in wet sediment and rock. Radiolytic H2 has been identified as the primary electron donor (food) for microorganisms in continental aquifers kilometers below Earth’s surface. Radiolytic products may also be significant for sustaining life in subseafloor sediment and subsurface environments of other planets. However, the extent to which most subsurface ecosystems rely on radiolytic products has been poorly constrained, due to incomplete understanding of radiolytic chemical yields in natural environments. Here we show that all common marine sediment types catalyse radiolytic H2 production, amplifying yields by up to 27X relative to pure water. In electron equivalents, the global rate of radiolytic H2 production in marine sediment appears to be 1-2% of the global organic flux to the seafloor. However, most organic matter is consumed at or near the seafloor, whereas radiolytic H2 is produced at all sediment depths. Comparison of radiolytic H2 consumption rates to organic oxidation rates suggests that water radiolysis is the principal source of biologically accessible energy for microbial communities in marine sediment older than a few million years. Where water permeates similarly catalytic material on other worlds, life may also be sustained by water radiolysis.
  • Article
    Intercomparison of XRF core scanning results from seven labs and approaches to practical calibration
    (American Geophysical Union, 2020-09-09) Dunlea, Ann G. ; Murray, Richard W. ; Tada, Ryuji ; Alvarez-Zarikian, Carlos A. ; Anderson, Chloe H. ; Gilli, Adrian ; Giosan, Liviu ; Gorgas, Thomas ; Hennekam, Rick ; Irino, Tomohisa ; Murayama, Masafumi ; Peterson, Larry C. ; Reichart, Gert-Jan ; Seki, Arisa ; Zheng, Hongbo ; Ziegler, Martin
    X‐ray fluorescence (XRF) scanning of marine sediment has the potential to yield near‐continuous and high‐resolution records of elemental abundances, which are often interpreted as proxies for paleoceanographic processes over different time scales. However, many other variables also affect scanning XRF measurements and convolute the quantitative calibrations of element abundances and comparisons of data from different labs. Extensive interlab comparisons of XRF scanning results and calibrations are essential to resolve ambiguities and to understand the best way to interpret the data produced. For this study, we sent a set of seven marine sediment sections (1.5 m each) to be scanned by seven XRF facilities around the world to compare the outcomes amidst a myriad of factors influencing the results. Results of raw element counts per second (cps) were different between labs, but element ratios were more comparable. Four of the labs also scanned a set of homogenized sediment pellets with compositions determined by inductively coupled plasma‐optical emission spectrometry (ICP‐OES) and ICP‐mass spectrometry (MS) to convert the raw XRF element cps to concentrations in two ways: a linear calibration and a log‐ratio calibration. Although both calibration curves are well fit, the results show that the log‐ratio calibrated data are significantly more comparable between labs than the linearly calibrated data. Smaller‐scale (higher‐resolution) features are often not reproducible between the different scans and should be interpreted with caution. Along with guidance on practical calibrations, our study recommends best practices to increase the quality of information that can be derived from scanning XRF to benefit the field of paleoceanography.
  • Article
    Neoglacial climate anomalies and the Harappan metamorphosis
    (Copernicus Publications on behalf of the European Geosciences Union, 2018-11-13) Giosan, Liviu ; Orsi, William D. ; Coolen, Marco J. L. ; Wuchter, Cornelia ; Dunlea, Ann G. ; Thirumalai, Kaustubh ; Munoz, Samuel E. ; Clift, Peter D. ; Donnelly, Jeffrey P. ; Galy, Valier ; Fuller, Dorian Q.
    Climate exerted constraints on the growth and decline of past human societies but our knowledge of temporal and spatial climatic patterns is often too restricted to address causal connections. At a global scale, the inter-hemispheric thermal balance provides an emergent framework for understanding regional Holocene climate variability. As the thermal balance adjusted to gradual changes in the seasonality of insolation, the Intertropical Convergence Zone migrated southward accompanied by a weakening of the Indian summer monsoon. Superimposed on this trend, anomalies such as the Little Ice Age point to asymmetric changes in the extratropics of either hemisphere. Here we present a reconstruction of the Indian winter monsoon in the Arabian Sea for the last 6000 years based on paleobiological records in sediments from the continental margin of Pakistan at two levels of ecological complexity: sedimentary ancient DNA reflecting water column environmental states and planktonic foraminifers sensitive to winter conditions. We show that strong winter monsoons between ca. 4500 and 3000 years ago occurred during a period characterized by a series of weak interhemispheric temperature contrast intervals, which we identify as the early neoglacial anomalies (ENA). The strong winter monsoons during ENA were accompanied by changes in wind and precipitation patterns that are particularly evident across the eastern Northern Hemisphere and tropics. This coordinated climate reorganization may have helped trigger the metamorphosis of the urban Harappan civilization into a rural society through a push–pull migration from summer flood-deficient river valleys to the Himalayan piedmont plains with augmented winter rains. The decline in the winter monsoon between 3300 and 3000 years ago at the end of ENA could have played a role in the demise of the rural late Harappans during that time as the first Iron Age culture established itself on the Ghaggar-Hakra interfluve. Finally, we speculate that time-transgressive land cover changes due to aridification of the tropics may have led to a generalized instability of the global climate during ENA at the transition from the warmer Holocene thermal maximum to the cooler Neoglacial.
  • Article
    Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering
    (Nature Publishing Group, 2017-10-10) Dunlea, Ann G. ; Murray, Richard W. ; Santiago Ramos, Danielle ; Higgins, John A.
    Authigenic clay minerals formed on or in the seafloor occur in every type of marine sediment. They are recognized to be a major sink of many elements in the ocean but are difficult to study directly due to dilution by detrital clay minerals. The extremely low dust fluxes and marine sedimentation rates in the South Pacific Gyre (SPG) provide a unique opportunity to examine relatively undiluted authigenic clay. Here, using Mg isotopes and element concentrations combined with multivariate statistical modeling, we fingerprint and quantify the abundance of authigenic clay within SPG sediment. Key reactants include volcanic ash (source of reactive aluminium) and reactive biogenic silica on or shallowly buried within the seafloor. Our results, together with previous studies, suggest that global reorganizations of biogenic silica burial over the Cenozoic reduced marine authigenic clay formation, contributing to the rise in seawater Mg/Ca and decline in atmospheric CO2 over the past 50 million years.
  • Article
    Climatically driven changes in the supply of terrigenous sediment to the East China Sea
    (John Wiley & Sons, 2018-08-11) Anderson, Chloe H. ; Murray, Richard W. ; Dunlea, Ann G. ; Giosan, Liviu ; Kinsley, Christopher W. ; McGee, David ; Tada, Ryuji
    We examine the paleoceanographic record over the last ∼400 kyr derived from major, trace, and rare earth elements in bulk sediment from two sites in the East China Sea drilled during Integrated Ocean Drilling Program Expedition 346. We use multivariate statistical partitioning techniques (Q‐mode factor analysis, multiple linear regression) to identify and quantify five crustal source components (Upper Continental Crust (UCC), Luochuan Loess, Xiashu Loess, Southern Japanese Islands, Kyushu Volcanics), and model their mass accumulation rates (MARs). UCC (35–79% of terrigenous contribution) and Luochuan Loess (16–55% contribution) are the most abundant end‐members through time, while Xiashu Loess, Southern Japanese Islands, and Kyushu Volcanics (1–22% contribution) are the lowest in abundance when present. Cycles in UCC and Luochuan Loess MARs may indicate continental and loess‐like material transported by major rivers into the Okinawa Trough. Increases in sea level and grain size proxy (e.g., SiO2/Al2O3) are coincident with increased flux of Southern Japanese Islands, indicating localized sediment supply from Japan. Increases in total terrigenous MAR precede minimum relative sea levels by several thousand years and may indicate remobilization of continental shelf material. Changes in the relative contribution of these end‐members are decoupled from total MAR, indicating compositional changes in the sediment are distinct from accumulation rate changes but may be linked to variations in sea level, riverine and eolian fluxes, and shelf‐bypass processes over glacial‐interglacials, complicating accurate monsoon reconstructions from fluvial dominated sediment.
  • Article
    High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346
    (Springer, 2018-03-26) Tada, Ryuji ; Irino, Tomohisa ; Ikehara, Ken ; Karasuda, Akinori ; Sugisaki, Saiko ; Xuan, Chuang ; Sagawa, Takuya ; Itaki, Takuya ; Kubota, Yoshimi ; Lu, Song ; Seki, Arisa ; Murray, Richard W. ; Alvarez-Zarikian, Carlos A. ; Anderson, William T. ; Bassetti, Maria-Angela ; Brace, Bobbi J. ; Clemens, Steven C. ; da Costa Gurgel, Marcio H. ; Dickens, Gerald R. ; Dunlea, Ann G. ; Gallagher, Stephen J. ; Giosan, Liviu ; Henderson, Andrew C. G. ; Holbourn, Ann E. ; Kinsley, Christopher W. ; Lee, Gwang Soo ; Lee, Kyung Eun ; Lofi, Johanna ; Lopes, Christina I. C. D. ; Saavedra-Pellitero, Mariem ; Peterson, Larry C. ; Singh, Raj K. ; Toucanne, Samuel ; Wan, Shiming ; Zheng, Hongbo ; Ziegler, Martin
    The Quaternary hemipelagic sediments of the Japan Sea are characterized by centimeter- to decimeter-scale alternation of dark and light clay to silty clay, which are bio-siliceous and/or bio-calcareous to a various degree. Each of the dark and light layers are considered as deposited synchronously throughout the deeper (> 500 m) part of the sea. However, attempts for correlation and age estimation of individual layers are limited to the upper few tens of meters. In addition, the exact timing of the depositional onset of these dark and light layers and its synchronicity throughout the deeper part of the sea have not been explored previously, although the onset timing was roughly estimated as ~ 1.5 Ma based on the result of Ocean Drilling Program legs 127/128. Consequently, it is not certain exactly when their deposition started, whether deposition of dark and light layers was synchronous and whether they are correlatable also in the earlier part of their depositional history. The Quaternary hemipelagic sediments of the Japan Sea were drilled at seven sites during Integrated Ocean Drilling Program Expedition 346 in 2013. Alternation of dark and light layers was recovered at six sites whose water depths are > ~ 900 m, and continuous composite columns were constructed at each site. Here, we report our effort to correlate individual dark layers and estimate their ages based on a newly constructed age model at Site U1424 using the best available paleomagnetic datum and marker tephras. The age model is further tuned to LR04 δ18O curve using gamma ray attenuation density (GRA) since it reflects diatom contents that are higher during interglacial high-stands. The constructed age model for Site U1424 is projected to other sites using correlation of dark layers to form a high-resolution and high-precision paleo-observatory network that allows to reconstruct changes in material fluxes with high spatio-temporal resolutions.
  • Article
    Quantifying K, U, and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution
    (John Wiley & Sons, 2017-03-21) De Vleeschouwer, David ; Dunlea, Ann G. ; Auer, Gerald ; Anderson, Chloe H. ; Brumsack, Hans-Jürgen ; de Loach, Aaron ; Gurnis, Michael ; Huh, Youngsook ; Ishiwa, Takeshige ; Jang, Kwangchul ; Kominz, Michelle A. ; März, Christian ; Schnetger, Bernhard ; Murray, Richard W. ; Pälike, Heiko ; Expedition 356 Shipboard Scientists
    During International Ocean Discovery Program (IODP) expeditions, shipboard-generated data provide the first insights into the cored sequences. The natural gamma radiation (NGR) of the recovered material, for example, is routinely measured on the ocean drilling research vessel DV JOIDES Resolution. At present, only total NGR counts are readily available as shipboard data, although full NGR spectra (counts as a function of gamma-ray energy level) are produced and archived. These spectra contain unexploited information, as one can estimate the sedimentary contents of potassium (K), thorium (Th), and uranium (U) from the characteristic gamma-ray energies of isotopes in the 40K, 232Th, and 238U radioactive decay series. Dunlea et al. (2013) quantified K, Th, and U contents in sediment from the South Pacific Gyre by integrating counts over specific energy levels of the NGR spectrum. However, the algorithm used in their study is unavailable to the wider scientific community due to commercial proprietary reasons. Here, we present a new MATLAB algorithm for the quantification of NGR spectra that is transparent and accessible to future NGR users. We demonstrate the algorithm's performance by comparing its results to shore-based inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-emission spectrometry (ICP-ES), and quantitative wavelength-dispersive X-ray fluorescence (XRF) analyses. Samples for these comparisons come from eleven sites (U1341, U1343, U1366-U1369, U1414, U1428-U1430, and U1463) cored in two oceans during five expeditions. In short, our algorithm rapidly produces detailed high-quality information on sediment properties during IODP expeditions at no extra cost.