Chan Lui-Heung

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Chemistry of hot springs along the Eastern Lau Spreading Center
    ( 2010-12-08) Mottl, Michael J. ; Seewald, Jeffrey S. ; Wheat, C. Geoffrey ; Tivey, Margaret K. ; Michael, Peter J. ; Proskurowski, Giora ; McCollom, Thomas M. ; Reeves, Eoghan P. ; Sharkey, Jessica ; You, Chen-Feng ; Chan, Lui-Heung ; Pichler, Thomas
    The Eastern Lau Spreading Center (ELSC) is the southernmost part of the back-arc spreading axis in the Lau Basin, west of the Tonga trench and the active Tofua volcanic arc. Over its 397-km length it exhibits large and systematic changes in spreading rate, magmatic/tectonic processes, and proximity to the volcanic arc. In 2005 we collected 81 samples of vent water from six hydrothermal fields along the ELSC. The chemistry of these waters varies both within and between vent fields, in response to changes in substrate composition, temperature and pressure, pH, water/rock ratio, and input from magmatic gases and subducted sediment. Hot-spring temperatures range from 229º to 363ºC at the five northernmost fields, with a general decrease to the south that is reversed at the Mariner field. The southernmost field, Vai Lili, emitted water at up to 334°C in 1989 but had a maximum venting temperature of only 121ºC in 2005, due to waning activity and admixture of bottom seawater into the subseafloor plumbing system. Chloride varies both within fields and from one field to another, from a low of 528 mmol/kg to a high of 656 mmol/kg, and may be enriched by phase separation and/or leaching of Cl from the rock. Concentrations of the soluble elements K, Rb, Cs, and B likewise increase southward as the volcanic substrate becomes more silica-rich, especially on the Valu Fa Ridge. Iodine and δ7Li increase southward, and δ11B decreases as B increases, apparently in response to increased input from subducted sediment as the arc is approached. Species that decrease southward as temperature falls are Si, H2S, Li, Na/Cl, Fe, Mn, and 87Sr/86Sr, whereas pH, alkalinity, Ca, and Sr increase. Oxygen isotopes indicate a higher water/rock ratio in the three systems on Valu Fa Ridge, consistent with higher porosity in more felsic volcanic rocks. Vent waters at the Mariner vent field on the Valu Fa Ridge are significantly hotter, more acid and metal-rich, less saline, and richer in dissolved gases and other volatiles, including H2S, CO2, and F, than the other vent fields, consistent with input of magmatic gases. The large variations in geologic and geophysical parameters produced by back-arc spreading along the ELSC, which exceed those along mid-ocean ridge spreading axes, produce similar large variations in the composition of vent waters, and thus provide new insights into the processes that control the chemistry of submarine hot springs.
  • Article
    Pulsed subduction accretion and tectonic erosion reconstructed since 2.5 Ma from the tephra record offshore Costa Rica
    (American Geophysical Union, 2005-09-27) Clift, Peter D. ; Chan, Lui-Heung ; Blusztajn, Jerzy S. ; Layne, Graham D. ; Kastner, Miriam ; Kelly, Robyn K.
    Tephra layers recovered by Ocean Drilling Program from the forearc and trench regions offshore the Nicoya Peninsula of Costa Rica allow the temporal evolution of the volcanic arc to be reconstructed since 2.5 Ma. Major and trace element analyses by microprobe methods reveal a dominant tholeiitic character and a provenance in the Costa Rican area. The tephra show long-term coherent variability in geochemistry. One tephra dated at 1.45 Ma shows minimum values in ɛ Nd and maximum Li/Y consistent with very high degrees of sediment recycling at this time. However, overall Li/Y and δ7Li increase with SiO2 content, suggesting addition of heavy Li through forearc tectonic erosion and crustal assimilation. Peak values in δ7Li starting at 1.45 Ma and lasting ∼0.5 m.y. indicate enhanced tectonic erosion of the forearc possibly caused by subduction of a seamount at 1.45 Ma. The tephra record indicates significant temporal variability in terms of sediment subduction, reconciling the geologic evidence for long-term tectonic erosion and geochemical evidence for recent sediment accretion in the modern Central American arc.