Haus Brian K.

No Thumbnail Available
Last Name
First Name
Brian K.

Search Results

Now showing 1 - 3 of 3
  • Article
    Gas fluxes and steady state saturation anomalies at very high wind speeds
    (American Geophysical Union, 2022-09-25) Stanley, Rachel H. R. ; Kinjo, Lumi ; Smith, Andrew W. ; Aldrett, Danielle ; Alt, Helene ; Kopp, Emily ; Krevanko, Callan ; Cahill, Kevin ; Haus, Brian K.
    Gas exchange at high wind speeds is not well understood—few studies have been conducted at wind speeds above 20 ms−1 and significant disagreement exists between gas exchange models at high wind speeds. In this study, noble gases (He, Ne, Ar, Kr, and Xe) were measured in 35 experiments in the SUSTAIN wind‐wave tank where the wind speeds ranged from 20 to 50 m s−1 and mechanical waves were generated as monochromatic or with a short‐crested JONSWAP frequency spectrum. Bubble size spectra were determined using shadowgraph imagery and wave statistics were measured using a wave wire array. The steady state saturation anomalies and gas fluxes initially increased as wind speeds increased but then leveled off, similar to prior studies of heat and momentum flux coefficients. Noble gas fluxes and steady state saturation anomalies are correlated most strongly with bubble volumes for the less soluble noble gases and with wind speed and wave Reynolds number for the more soluble noble gases. In the JONSWAP experiments, significant wave height was the most important predictor for gas steady state saturation anomalies with correlation coefficients of greater than 0.92 for He, Ne, and Ar (P < 0.05). Furthermore, invasion fluxes were larger than evasion fluxes when other conditions were similar. Taken together, these lab‐based experiments suggest more attention should be paid to parameterizations based on wave characteristics and bubbles and that current wind‐speed based gas exchange parameterizations should not be applied to conditions with very high wind speeds.
  • Preprint
    Wave energy level and geographic setting correlate with Florida beach water quality
    ( 2015-09) Feng, Zhixuan ; Reniers, Ad ; Haus, Brian K. ; Solo-Gabriele, Helena M. ; Kelly, Elizabeth A.
    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment.
  • Working Paper
    US SOLAS Science Report
    (Woods Hole Oceanographic Institution, 2021-12) Stanley, Rachel H. R. ; Bell, Tom G. ; Gao, Yuan ; Gaston, Cassandra J. ; Ho, David T. ; Kieber, David J. ; Mackey, Katherine R. M. ; Meskhidze, Nicholas ; Miller, William L. ; Potter, Henry ; Vlahos, Penny ; Yager, Patricia L. ; Alexander, Becky ; Beaupre, Steven R. ; Craig, Susanne E. ; Cutter, Gregory A. ; Emerson, Steven ; Frossard, Amanda A. ; Gasso, Santiago ; Haus, Brian K. ; Keene, William C. ; Landing, William M. ; Moore, Richard H. ; Ortiz-Suslow, David ; Palter, Jaime B. ; Paulot, Fabien ; Saltzman, Eric ; Thornton, Daniel ; Wozniak, Andrew S. ; Zamora, Lauren M. ; Benway, Heather M.
    The Surface Ocean – Lower Atmosphere Study (SOLAS) ( is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activities, facilitate interactions among atmospheric and ocean scientists, and strengthen US contributions to international SOLAS. In October 2019, with support from OCB, the OAIC convened an open community workshop, Ocean-Atmosphere Interactions: Scoping directions for new research with the goal of fostering new collaborations and identifying knowledge gaps and high-priority science questions to formulate a US SOLAS Science Plan. Based on presentations and discussions at the workshop, the OAIC and workshop participants have developed this US SOLAS Science Plan. The first part of the workshop and this Science Plan were purposefully designed around the five themes of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016) to provide a common set of research priorities and ensure a more cohesive US contribution to international SOLAS.