Holmgren Miguel

No Thumbnail Available
Last Name
Holmgren
First Name
Miguel
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Sodium flux ratio in Na/K pump-channels opened by palytoxin
    (Rockefeller University Press, 2007-06-11) Rakowski, Robert F. ; Artigas, Pablo ; Palma, Francisco ; Holmgren, Miguel ; De Weer, Paul ; Gadsby, David C.
    Palytoxin binds to Na+/K+ pumps in the plasma membrane of animal cells and opens an electrodiffusive cation pathway through the pumps. We investigated properties of the palytoxin-opened channels by recording macroscopic and microscopic currents in cell bodies of neurons from the giant fiber lobe, and by simultaneously measuring net current and 22Na+ efflux in voltage-clamped, internally dialyzed giant axons of the squid Loligo pealei. The conductance of single palytoxin-bound "pump-channels" in outside-out patches was ~7 pS in symmetrical 500 mM [Na+], comparable to findings in other cells. In these high-[Na+], K+-free solutions, with 5 mM cytoplasmic [ATP], the K0.5 for palytoxin action was ~70 pM. The pump-channels were ~40–50 times less permeable to N-methyl-D-glucamine (NMG+) than to Na+. The reversal potential of palytoxin-elicited current under biionic conditions, with the same concentration of a different permeant cation on each side of the membrane, was independent of the concentration of those ions over the range 55–550 mM. In giant axons, the Ussing flux ratio exponent (n') for Na+ movements through palytoxin-bound pump-channels, over a 100–400 mM range of external [Na+] and 0 to –40 mV range of membrane potentials, averaged 1.05 ± 0.02 (n = 28). These findings are consistent with occupancy of palytoxin-bound Na+/K+ pump-channels either by a single Na+ ion or by two Na+ ions as might be anticipated from other work; idiosyncratic constraints are needed if the two Na+ ions occupy a single-file pore, but not if they occupy side-by-side binding sites, as observed in related structures, and if only one of the sites is readily accessible from both sides of the membrane.
  • Article
    The dynamic relationships between the three events that release individual Na+ ions from the Na+/K+-ATPase
    (Nature Publishing Group, 2012-02-14) Gadsby, David C. ; Bezanilla, Francisco ; Rakowski, Robert F. ; De Weer, Paul ; Holmgren, Miguel
    Na+/K+ pumps move net charge through the cell membrane by mediating unequal exchange of intracellular Na+ and extracellular K+. Most charge moves during transitions that release Na+ to the cell exterior. When pumps are constrained to bind and release only Na+, a membrane voltage-step redistributes pumps among conformations with zero, one, two or three bound Na+, thereby transiently generating current. By applying rapid voltage steps to squid giant axons, we previously identified three components in such transient currents, with distinct relaxation speeds: fast (which nearly parallels the voltage-jump time course), medium speed (τm=0.2–0.5 ms) and slow (τs=1–10 ms). Here we show that these three components are tightly correlated, both in their magnitudes and in the time courses of their changes. The correlations reveal the dynamics of the conformational rearrangements that release three Na+ to the exterior (or sequester them into their binding sites) one at a time, in an obligatorily sequential manner.
  • Article
    Molecular determinants for cold adaptation in an Antarctic Na+/K+-ATPase
    (National Academy of Sciences, 2023-10-02) Galarza-Muñoz, Gaddiel ; Soto-Morales, Sonia I. ; Jiao, Song ; Holmgren, Miguel ; Rosenthal, Joshua J. C.
    Enzymes from ectotherms living in chronically cold environments have evolved structural innovations to overcome the effects of temperature on catalysis. Cold adaptation of soluble enzymes is driven by changes within their primary structure or the aqueous milieu. For membrane-embedded enzymes, like the Na+/K+-ATPase, the situation is different because changes to the lipid bilayer in which they operate may also be relevant. Although much attention has been focused on thermal adaptation within lipid bilayers, relatively little is known about the contribution of structural changes within membrane-bound enzymes themselves. The identification of specific mutations that confer temperature compensation is complicated by the presence of neutral mutations, which can be more numerous. In the present study, we identified specific amino acids in a Na+/K+-ATPase from an Antarctic octopus that underlie cold resistance. Our approach was to generate chimeras between an Antarctic clone and a temperate ortholog and then study their temperature sensitivities in Xenopus oocytes using an electrophysiological approach. We identified 12 positions in the Antarctic Na+/K+-ATPase that, when transferred to the temperate ortholog, were sufficient to confer cold tolerance. Furthermore, although all 12 Antarctic mutations were required for the full phenotype, a single leucine in the third transmembrane segment (M3) imparted most of it. Mutations that confer cold resistance are mostly in transmembrane segments, at positions that face the lipid bilayer. We propose that the interface between a transmembrane enzyme and the lipid bilayer is a critical determinant of temperature sensitivity and, accordingly, has been a prime evolutionary target for thermal adaptation.