Dunn Robert A.

No Thumbnail Available
Last Name
Dunn
First Name
Robert A.
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    Heterogeneous and asymmetric crustal accretion : new constraints from multibeam bathymetry and potential field data from the Rainbow area of the Mid-Atlantic Ridge (36°15'N)
    (John Wiley & Sons, 2015-09-13) Paulatto, Michele ; Canales, J. Pablo ; Dunn, Robert A. ; Sohn, Robert A.
    At slow-spreading mid-ocean ridges, crustal accretion style can vary significantly along and across ridge segments. In magma-poor regions, seafloor spreading can be accommodated largely by tectonic processes, however, the internal structure and formation mechanism of such highly tectonized crust are not fully understood. We analyze multibeam bathymetry and potential field data from the Rainbow area of the Mid-Atlantic Ridge (35°40'N–36°40'N), a section of the ridge that shows diverse accretion styles. We identify volcanic, tectonized and sedimented terrain and measure exposed fault area to estimate the tectonic strain, T, and the fraction of magmatic accretion, M. Estimated T values range from 0.2–0.4 on ridge segments to 0.6-0.8 at the Rainbow nontransform discontinuity (NTD). At segment ends T is asymmetric, reflecting asymmetries in accretion rate, topography and faulting between inside and outside offset corners. Detachment faults have formed preferentially at inside corners, where tectonic strain is higher. We identify at least two oceanic core complexes on the fossil trace of the NTD, in addition to the Rainbow massif, which occupies the offset today. A gravity high and low magnetization suggest that the Rainbow massif, which hosts a high-temperature hydrothermal system, was uplifted by a west dipping detachment fault. Asymmetric plate ages indicate localization of tectonic strain at the inside corners and migration of the detachment toward and across the ridge axis, which may have caused emplacement of magma into the footwall. Hydrothermal circulation and heat extraction is possibly favored by increased permeability generated by fracturing of the footwall and deep-penetrating second-generation faults.
  • Preprint
    Seismic imaging of magma sills beneath an ultramafic-hosted hydrothermal system
    ( 2017-01) Canales, J. Pablo ; Dunn, Robert A. ; Arai, Ryuta ; Sohn, Robert A.
    Hydrothermal circulation at mid-ocean ridge volcanic segments extracts heat from crustal magma bodies. However, the heat source driving hydrothermal circulation in ultramafic outcrops, where mantle rocks are exhumed in low-magma-supply environments, has remained enigmatic. Here we use a three-dimensional P-wave velocity model derived from active-source wide-angle refraction-reflection ocean bottom seismometer data and pre-stack depth-migrated images derived from multichannel seismic reflection data to investigate the internal structure of the Rainbow ultramafic massif, which is located in a non-transform discontinuity of the Mid-Atlantic Ridge. Seismic imaging reveals that the ultramafic rocks composing the Rainbow massif have been intruded by a large number of magmatic sills, distributed throughout the massif at depths of ∼2–10 km. These sills, which appear to be at varying stages of crystallization, can supply the heat needed to drive high-temperature hydrothermal circulation, and thus provide an explanation for the hydrothermal discharge observed in this ultramafic setting. Our results demonstrate that high-temperature hydrothermal systems can be driven by heat from deep-sourced magma even in exhumed ultramafic lithosphere with very low magma supply.
  • Article
    Local seismicity of the Rainbow massif on the Mid‐Atlantic Ridge
    (John Wiley & Sons, 2018-01-20) Horning, Gregory W. ; Sohn, Robert A. ; Canales, J. Pablo ; Dunn, Robert A.
    The Rainbow massif, an oceanic core complex located in a nontransform discontinuity on the Mid‐Atlantic Ridge (36°N), is notable for hosting high‐temperature hydrothermal discharge through ultramafic rocks. Here we report results from a 9 month microearthquake survey conducted with a network of 13 ocean bottom seismometers deployed on and around the Rainbow massif as part of the MARINER experiment in 2013–2014. High rates (~300 per day) of low‐magnitude (average ML ~ 0.5) microearthquakes were detected beneath the massif. The hypocenters do not cluster along deeply penetrating fault surfaces and do not exhibit mainshock/aftershock sequences, supporting the hypothesis that the faulting associated with the exhumation of the massif is currently inactive. Instead, the hypocenters demarcate a diffuse zone of continuous, low‐magnitude deformation at relatively shallow (< ~3 km) depths beneath the massif, sandwiched in between the seafloor and seismic reflectors interpreted to be magmatic sills driving hydrothermal convection. Most of the seismicity is located in regions where seismic refraction data indicate serpentinized ultramafic host rock, and although the seismic network we deployed was not capable of constraining the focal mechanism of most events, our analysis suggests that serpentinization may play an important role in microearthquake generation at the Rainbow massif.
  • Article
    Three-dimensional seismic structure of the Mid-Atlantic Ridge : an investigation of tectonic, magmatic, and hydrothermal processes in the Rainbow Area
    (John Wiley & Sons, 2017-12-29) Dunn, Robert A. ; Arai, Ryuta ; Eason, Deborah E. ; Canales, J. Pablo ; Sohn, Robert A.
    To test models of tectonic, magmatic, and hydrothermal processes along slow-spreading mid-ocean ridges, we analyzed seismic refraction data from the Mid-Atlantic Ridge INtegrated Experiments at Rainbow (MARINER) seismic and geophysical mapping experiment. Centered at the Rainbow area of the Mid-Atlantic Ridge (36°14'N), this study examines a section of ridge with volcanically active segments and a relatively amagmatic ridge offset that hosts the ultramafic Rainbow massif and its high-temperature hydrothermal vent field. Tomographic images of the crust and upper mantle show segment-scale variations in crustal structure, thickness, and the crust-mantle transition, which forms a vertical gradient rather than a sharp boundary. There is little definitive evidence for large regions of sustained high temperatures and melt in the lower crust or upper mantle along the ridge axes, suggesting that melts rising from the mantle intrude as small intermittent magma bodies at crustal and subcrustal levels. The images reveal large rotated crustal blocks, which extend to mantle depths in some places, corresponding to off-axis normal fault locations. Low velocities cap the Rainbow massif, suggesting an extensive near-surface alteration zone due to low-temperature fluid-rock reactions. Within the interior of the massif, seismic images suggest a mixture of peridotite and gabbroic intrusions, with little serpentinization. Here diffuse microearthquake activity indicates a brittle deformation regime supporting a broad network of cracks. Beneath the Rainbow hydrothermal vent field, fluid circulation is largely driven by the heat of small cooling melt bodies intruded into the base of the massif and channeled by the crack network and shallow faults.
  • Article
    Segment-scale variations in seafloor volcanic and tectonic processes from multibeam sonar imaging, Mid-Atlantic Ridge Rainbow region (35°45′–36°35′N)
    (John Wiley & Sons, 2016-09-07) Eason, Deborah E. ; Dunn, Robert A. ; Canales, J. Pablo ; Sohn, Robert A.
    Along-axis variations in melt supply and thermal structure can lead to significant variations in the mode of crustal accretion at mid-ocean ridges. We examine variations in seafloor volcanic and tectonic processes on the scale of individual ridge segments in a region of the slow spreading Mid-Atlantic Ridge (35°45′–36°35′N) centered on the Rainbow nontransform discontinuity (NTD). We use multibeam sonar backscatter amplitude data, taking advantage of multifold and multidirectional coverage from the MARINER geophysical study to create a gridded compilation of seafloor reflectivity, and interpret the sonar image within the context of other data to examine seafloor properties and identify volcanic flow fields and tectonic features. Along the spreading segments, differences in volcanic productivity, faulting, eruption style, and frequency correlate with inferred magma supply. Regions of low magma supply are associated with more widely spaced faults, and larger volcanic flow fields that are more easily identified in the backscatter image. Identified flow fields with the highest backscatter occur near the ends of ridge segments. Their relatively smooth topography contrasts with the more hummocky, cone-dominated terrain that dominates most of the neovolcanic zone. Patches of seafloor with high, moderately high, and low backscatter intensity across the Rainbow massif are spatially correlated with observations of basalt, gabbro and serpentinized peridotite, and sediment, respectively. Large detachment faults have repeatedly formed along the inside corners of the Rainbow NTD, producing a series of oceanic core complexes along the wake of the NTD. A new detachment fault is currently forming in the ridge segment just north of the now inactive Rainbow massif.