Rabe Benjamin

No Thumbnail Available
Last Name
Rabe
First Name
Benjamin
ORCID
0000-0001-5794-9856

Search Results

Now showing 1 - 5 of 5
  • Article
    Insights into water mass origins in the central Arctic Ocean from in-situ dissolved organic matter fluorescence
    (American Geophysical Union, 2021-06-27) Stedmon, Colin ; Amon, Rainer M. W. ; Bauch, Dorothea ; Bracher, Astrid ; Gonçalves-Araujo, Rafael ; Hoppmann, Mario ; Krishfield, Richard A. ; Laney, Samuel R. ; Rabe, Benjamin ; Reader, Heather ; Granskog, Mats A.
    The Arctic Ocean receives a large supply of dissolved organic matter (DOM) from its catchment and shelf sediments, which can be traced across much of the basin's upper waters. This signature can potentially be used as a tracer. On the shelf, the combination of river discharge and sea-ice formation, modifies water densities and mixing considerably. These waters are a source of the halocline layer that covers much of the Arctic Ocean, but also contain elevated levels of DOM. Here we demonstrate how this can be used as a supplementary tracer and contribute to evaluating ocean circulation in the Arctic. A fraction of the organic compounds that DOM consists of fluoresce and can be measured using in-situ fluorometers. When deployed on autonomous platforms these provide high temporal and spatial resolution measurements over long periods. The results of an analysis of data derived from several Ice Tethered Profilers (ITPs) offer a unique spatial coverage of the distribution of DOM in the surface 800 m below Arctic sea-ice. Water mass analysis using temperature, salinity and DOM fluorescence, can clearly distinguish between the contribution of Siberian terrestrial DOM and marine DOM from the Chukchi shelf to the waters of the halocline. The findings offer a new approach to trace the distribution of Pacific waters and its export from the Arctic Ocean. Our results indicate the potential to extend the approach to separate freshwater contributions from, sea-ice melt, riverine discharge and the Pacific Ocean.
  • Article
    Overview of the MOSAiC expedition: physical oceanography
    (University of California Press, 2022-02-07) Rabe, Benjamin ; Heuzé, Céline ; Regnery, Julia ; Aksenov, Yevgeny ; Allerholt, Jacob ; Athanase, Marylou ; Bai, Youcheng ; Basque, Chris R. ; Bauch, Dorothea ; Baumann, Till M. ; Chen, Dake ; Cole, Sylvia T. ; Craw, Lisa ; Davies, Andrew ; Damm, Ellen ; Dethloff, Klaus ; Divine, Dmitry V. ; Doglioni, Francesca ; Ebert, Falk ; Fang, Ying-Chih ; Fer, Ilker ; Fong, Allison A. ; Gradinger, Rolf ; Granskog, Mats A. ; Graupner, Rainer ; Haas, Christian ; He, Hailun ; Hoppmann, Mario ; Janout, Markus A. ; Kadko, David ; Kanzow, Torsten C. ; Karam, Salar ; Kawaguchi, Yusuke ; Koenig, Zoe ; Kong, Bin ; Krishfield, Richard A. ; Krumpen, Thomas ; Kuhlmey, David ; Kuznetsov, Ivan ; Lan, Musheng ; Laukert, Georgi ; Lei, Ruibo ; Li, Tao ; Torres-Valdes, Sinhue ; Lin, Lina ; Lin, Long ; Liu, Hailong ; Liu, Na ; Loose, Brice ; Ma, Xiaobing ; McKay, Rosalie ; Mallet, Maria ; Mallett, Robbie ; Maslowski, Wieslaw ; Mertens, Christian ; Mohrholz, Volker ; Muilwijk, Morven ; Nicolaus, Marcel ; O’Brien, Jeffrey K. ; Perovich, Donald K. ; Ren, Jian ; Rex, Markus ; Ribeiro, Natalia ; Rinke, Annette ; Schaffer, Janin ; Schuffenhauer, Ingo ; Schulz, Kirstin ; Shupe, Matthew ; Shaw, William J. ; Sokolov, Vladimir T. ; Sommerfeld, Anja ; Spreen, Gunnar ; Stanton, Timothy P. ; Stephens, Mark ; Su, Jie ; Sukhikh, Natalia ; Sundfjord, Arild ; Thomisch, Karolin ; Tippenhauer, Sandra ; Toole, John M. ; Vredenborg, Myriel ; Walter, Maren ; Wang, Hangzhou ; Wang, Lei ; Wang, Yuntao ; Wendisch, Manfred ; Zhao, Jinping ; Zhou, Meng ; Zhu, Jialiang
    Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.
  • Article
    A new structure for the Sea Ice Essential Climate variables of the Global Climate Observing System
    (American Meteorological Society, 2022-06-01) Lavergne, Thomas ; Kern, Stefan ; Aaboe, Signe ; Derby, Lauren ; Dybkjaer, Gorm ; Garric, Gilles ; Heil, Petra ; Hendricks, Stefan ; Holfort, Jürgen ; Howell, Stephen ; Key, Jeffrey ; Lieser, Jan ; Maksym, Ted ; Maslowski, Wieslaw ; Meier, Walt ; Muñoz-Sabater, Joaquín ; Nicolas, Julien ; Ozsoy, Burcu ; Rabe, Benjamin ; Rack, Wolfgang ; Raphael, Marilyn ; de Rosnay, Patricia ; Smolyanitsky, Vasily ; Tietsche, Steffen ; Ukita, Jinro ; Vichi, Marcello ; Wagner, Penelope M. ; Willmes, Sascha ; Zhao, Xi
    Climate observations inform about the past and present state of the climate system. They underpin climate science, feed into policies for adaptation and mitigation, and increase awareness of the impacts of climate change. The Global Climate Observing System (GCOS), a body of the World Meteorological Organization (WMO), assesses the maturity of the required observing system and gives guidance for its development. The Essential Climate Variables (ECVs) are central to GCOS, and the global community must monitor them with the highest standards in the form of Climate Data Records (CDR). Today, a single ECV—the sea ice ECV—encapsulates all aspects of the sea ice environment. In the early 1990s it was a single variable (sea ice concentration) but is today an umbrella for four variables (adding thickness, edge/extent, and drift). In this contribution, we argue that GCOS should from now on consider a set of seven ECVs (sea ice concentration, thickness, snow depth, surface temperature, surface albedo, age, and drift). These seven ECVs are critical and cost effective to monitor with existing satellite Earth observation capability. We advise against placing these new variables under the umbrella of the single sea ice ECV. To start a set of distinct ECVs is indeed critical to avoid adding to the suboptimal situation we experience today and to reconcile the sea ice variables with the practice in other ECV domains.
  • Article
    The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean
    (American Geophysical Union, 2020-04-08) Charette, Matthew A. ; Kipp, Lauren ; Jensen, Laramie T. ; Dabrowski, Jessica S. ; Whitmore, Laura M. ; Fitzsimmons, Jessica N. ; Williford, Tatiana ; Ulfsbo, Adam ; Jones, Elizabeth M. ; Bundy, Randelle M. ; Vivancos, Sebastian M. ; Pahnke, Katharina ; John, Seth G. ; Xiang, Yang ; Hatta, Mariko ; Petrova, Mariia V. ; Heimbürger, Lars-Eric ; Bauch, Dorothea ; Newton, Robert ; Pasqualini, Angelica ; Agather, Alison ; Amon, Rainer M. W. ; Anderson, Robert F. ; Andersson, Per S. ; Benner, Ronald ; Bowman, Katlin ; Edwards, R. Lawrence ; Gdaniec, Sandra ; Gerringa, Loes J. A. ; González, Aridane G. ; Granskog, Mats A. ; Haley, Brian ; Hammerschmidt, Chad R. ; Hansell, Dennis A. ; Henderson, Paul B. ; Kadko, David C. ; Kaiser, Karl ; Laan, Patrick ; Lam, Phoebe J. ; Lamborg, Carl H. ; Levier, Martin ; Li, Xianglei ; Margolin, Andrew R. ; Measures, Christopher I. ; Middag, Rob ; Millero, Frank J. ; Moore, Willard S. ; Paffrath, Ronja ; Planquette, Helene ; Rabe, Benjamin ; Reader, Heather ; Rember, Robert ; Rijkenberg, Micha J. A. ; Roy-Barman, Matthieu ; van der Loeff, Michiel Rutgers ; Saito, Mak A. ; Schauer, Ursula ; Schlosser, Peter ; Sherrell, Robert M. ; Shiller, Alan M. ; Slagter, Hans ; Sonke, Jeroen E. ; Stedmon, Colin ; Woosley, Ryan J. ; Valk, Ole ; van Ooijen, Jan ; Zhang, Ruifeng
    A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
  • Article
    Introduction to the special issue on the new Artic Ocean
    (Oceanography Society, 2022-12-08) Weingartner, Thomas ; Ashjian, Carin ; Brigham, Lawson ; Haine, Thomas ; Mack, Liza ; Perovich, Don ; Rabe, Benjamin
    One hundred and thirty years ago, Fridtjof Nansen, the Norwegian polar explorer and scientist, set off on a bold three-year journey to investigate the unknown Arctic Ocean. The expedition relied on a critical technological development: a small, strong, and maneuverable vessel, powered by sail and an engine, with an endurance of five years for twelve men. His intellectual curiosity and careful observations led to an early glimpse of the Arctic Ocean’s circulation and its unique ecosystem. Some of Nansen’s findings on sea ice and the penetration of Atlantic Water into the Arctic Ocean established a benchmark against which we have measured profound changes over the past few decades. In contrast, little was known about the Arctic Ocean’s ecosystem processes prior to the onset of anthropogenic climate change. Nansen’s successes, which paved the way for subsequent research, were gained in part from Indigenous Greenlanders who taught him how to survive in this harsh environment.