Rabe
Benjamin
Rabe
Benjamin
No Thumbnail Available
Search Results
Now showing
1 - 11 of 11
-
ArticleInsights into water mass origins in the central Arctic Ocean from in-situ dissolved organic matter fluorescence(American Geophysical Union, 2021-06-27) Stedmon, Colin ; Amon, Rainer M. W. ; Bauch, Dorothea ; Bracher, Astrid ; Gonçalves-Araujo, Rafael ; Hoppmann, Mario ; Krishfield, Richard A. ; Laney, Samuel R. ; Rabe, Benjamin ; Reader, Heather ; Granskog, Mats A.The Arctic Ocean receives a large supply of dissolved organic matter (DOM) from its catchment and shelf sediments, which can be traced across much of the basin's upper waters. This signature can potentially be used as a tracer. On the shelf, the combination of river discharge and sea-ice formation, modifies water densities and mixing considerably. These waters are a source of the halocline layer that covers much of the Arctic Ocean, but also contain elevated levels of DOM. Here we demonstrate how this can be used as a supplementary tracer and contribute to evaluating ocean circulation in the Arctic. A fraction of the organic compounds that DOM consists of fluoresce and can be measured using in-situ fluorometers. When deployed on autonomous platforms these provide high temporal and spatial resolution measurements over long periods. The results of an analysis of data derived from several Ice Tethered Profilers (ITPs) offer a unique spatial coverage of the distribution of DOM in the surface 800 m below Arctic sea-ice. Water mass analysis using temperature, salinity and DOM fluorescence, can clearly distinguish between the contribution of Siberian terrestrial DOM and marine DOM from the Chukchi shelf to the waters of the halocline. The findings offer a new approach to trace the distribution of Pacific waters and its export from the Arctic Ocean. Our results indicate the potential to extend the approach to separate freshwater contributions from, sea-ice melt, riverine discharge and the Pacific Ocean.
-
ArticleOverview of the MOSAiC expedition: physical oceanography(University of California Press, 2022-02-07) Rabe, Benjamin ; Heuzé, Céline ; Regnery, Julia ; Aksenov, Yevgeny ; Allerholt, Jacob ; Athanase, Marylou ; Bai, Youcheng ; Basque, Chris R. ; Bauch, Dorothea ; Baumann, Till M. ; Chen, Dake ; Cole, Sylvia T. ; Craw, Lisa ; Davies, Andrew ; Damm, Ellen ; Dethloff, Klaus ; Divine, Dmitry V. ; Doglioni, Francesca ; Ebert, Falk ; Fang, Ying-Chih ; Fer, Ilker ; Fong, Allison A. ; Gradinger, Rolf ; Granskog, Mats A. ; Graupner, Rainer ; Haas, Christian ; He, Hailun ; Hoppmann, Mario ; Janout, Markus A. ; Kadko, David ; Kanzow, Torsten C. ; Karam, Salar ; Kawaguchi, Yusuke ; Koenig, Zoe ; Kong, Bin ; Krishfield, Richard A. ; Krumpen, Thomas ; Kuhlmey, David ; Kuznetsov, Ivan ; Lan, Musheng ; Laukert, Georgi ; Lei, Ruibo ; Li, Tao ; Torres-Valdes, Sinhue ; Lin, Lina ; Lin, Long ; Liu, Hailong ; Liu, Na ; Loose, Brice ; Ma, Xiaobing ; McKay, Rosalie ; Mallet, Maria ; Mallett, Robbie ; Maslowski, Wieslaw ; Mertens, Christian ; Mohrholz, Volker ; Muilwijk, Morven ; Nicolaus, Marcel ; O’Brien, Jeffrey K. ; Perovich, Donald K. ; Ren, Jian ; Rex, Markus ; Ribeiro, Natalia ; Rinke, Annette ; Schaffer, Janin ; Schuffenhauer, Ingo ; Schulz, Kirstin ; Shupe, Matthew ; Shaw, William J. ; Sokolov, Vladimir T. ; Sommerfeld, Anja ; Spreen, Gunnar ; Stanton, Timothy P. ; Stephens, Mark ; Su, Jie ; Sukhikh, Natalia ; Sundfjord, Arild ; Thomisch, Karolin ; Tippenhauer, Sandra ; Toole, John M. ; Vredenborg, Myriel ; Walter, Maren ; Wang, Hangzhou ; Wang, Lei ; Wang, Yuntao ; Wendisch, Manfred ; Zhao, Jinping ; Zhou, Meng ; Zhu, JialiangArctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.
-
ArticleArctic Ocean basin liquid freshwater storage trend 1992–2012(John Wiley & Sons, 2014-02-12) Rabe, Benjamin ; Karcher, Michael ; Kauker, Frank ; Schauer, Ursula ; Toole, John M. ; Krishfield, Richard A. ; Pisarev, Sergey ; Kikuchi, Takashi ; Su, J.Freshwater in the Arctic Ocean plays an important role in the regional ocean circulation, sea ice, and global climate. From salinity observed by a variety of platforms, we are able, for the first time, to estimate a statistically reliable liquid freshwater trend from monthly gridded fields over all upper Arctic Ocean basins. From 1992 to 2012 this trend was 600±300 km3 yr−1. A numerical model agrees very well with the observed freshwater changes. A decrease in salinity made up about two thirds of the freshwater trend and a thickening of the upper layer up to one third. The Arctic Ocean Oscillation index, a measure for the regional wind stress curl, correlated well with our freshwater time series. No clear relation to Arctic Oscillation or Arctic Dipole indices could be found. Following other observational studies, an increased Bering Strait freshwater import to the Arctic Ocean, a decreased Davis Strait export, and enhanced net sea ice melt could have played an important role in the freshwater trend we observed.
-
ArticleA new structure for the Sea Ice Essential Climate variables of the Global Climate Observing System(American Meteorological Society, 2022-06-01) Lavergne, Thomas ; Kern, Stefan ; Aaboe, Signe ; Derby, Lauren ; Dybkjaer, Gorm ; Garric, Gilles ; Heil, Petra ; Hendricks, Stefan ; Holfort, Jürgen ; Howell, Stephen ; Key, Jeffrey ; Lieser, Jan ; Maksym, Ted ; Maslowski, Wieslaw ; Meier, Walt ; Muñoz-Sabater, Joaquín ; Nicolas, Julien ; Ozsoy, Burcu ; Rabe, Benjamin ; Rack, Wolfgang ; Raphael, Marilyn ; de Rosnay, Patricia ; Smolyanitsky, Vasily ; Tietsche, Steffen ; Ukita, Jinro ; Vichi, Marcello ; Wagner, Penelope M. ; Willmes, Sascha ; Zhao, XiClimate observations inform about the past and present state of the climate system. They underpin climate science, feed into policies for adaptation and mitigation, and increase awareness of the impacts of climate change. The Global Climate Observing System (GCOS), a body of the World Meteorological Organization (WMO), assesses the maturity of the required observing system and gives guidance for its development. The Essential Climate Variables (ECVs) are central to GCOS, and the global community must monitor them with the highest standards in the form of Climate Data Records (CDR). Today, a single ECV—the sea ice ECV—encapsulates all aspects of the sea ice environment. In the early 1990s it was a single variable (sea ice concentration) but is today an umbrella for four variables (adding thickness, edge/extent, and drift). In this contribution, we argue that GCOS should from now on consider a set of seven ECVs (sea ice concentration, thickness, snow depth, surface temperature, surface albedo, age, and drift). These seven ECVs are critical and cost effective to monitor with existing satellite Earth observation capability. We advise against placing these new variables under the umbrella of the single sea ice ECV. To start a set of distinct ECVs is indeed critical to avoid adding to the suboptimal situation we experience today and to reconcile the sea ice variables with the practice in other ECV domains.
-
PreprintDistribution of Pb-210 and Po-210 in the arctic water column during the 2007 sea-ice minimum: Particle export in the ice-covered basins.(Elsevier, 2018-10-22) Roca-Martí, Montserrat ; Puigcorbé, Viena ; Friedrich, Jana ; Rutgers van der Loeff, Michiel ; Rabe, Benjamin ; Korhonen, Meri ; Cámara Mor, Patricia ; Garcia-Orellana, Jordi ; Masqué, Pere210Pb and 210Po are naturally occurring radionuclides that are commonly used as a proxy for particle and carbon export. In this study, the distribution of the 210Po/210Pb pair was investigated in the water column of the Barents, Kara and Laptev Seas and the Nansen, Amundsen and Makarov Basins in order to understand the particle dynamics in the Arctic Ocean during the 2007 sea-ice minimum (August-September). Minimum activities of total 210Pb and 210Po were found in the upper and lower haloclines (approx. 60-130 m), which are partly attributed to particle scavenging over the shelves, boundary current transport and subsequent advection of the water with low 210Pb and 210Po activities into the central Arctic. Widespread and substantial (>50%) deficits of 210Po with respect to 210Pb were detected from surface waters to 200 m on the shelves, but also in the basins. This was particularly important in the Makarov Basin where, despite very low chlorophyll-a levels, estimates of annual new primary production were three times higher than in the Eurasian Basin. In the Nansen, Amundsen and Makarov 32 Basins, estimates of annual new primary production correlated with the deficits of 210Po in the upper 200 m of the water column, suggesting that in situ production and subsequent export of biogenic material were the mechanisms that controlled the removal of 210Po in the central Arctic. Unlike 210Po, 234Th deficits measured during the same expedition were found to be very small and not significant below 25 m in the basins (Cai et al., 2010), which indicates, given the shorter half-life of 234Th, that particle export fluxes in the central Arctic would have been higher before July-August in 2007 than later in the season.
-
ArticleEvolving the physical global ocean observing system for research and application services through international coordination(Frontiers Media, 2019-08-06) Sloyan, Bernadette M. ; Wilkin, John L. ; Hill, Katherine Louise ; Chidichimo, Maria Paz ; Cronin, Meghan F. ; Johannessen, Johnny A. ; Karstensen, Johannes ; Krug, Marjolaine ; Lee, Tong ; Oka, Eitarou ; Palmer, Matthew D. ; Rabe, Benjamin ; Speich, Sabrina ; von Schuckmann, Karina ; Weller, Robert A. ; Yu, WeidongClimate change and variability are major societal challenges, and the ocean is an integral part of this complex and variable system. Key to the understanding of the ocean’s role in the Earth’s climate system is the study of ocean and sea-ice physical processes, including its interactions with the atmosphere, cryosphere, land, and biosphere. These processes include those linked to ocean circulation; the storage and redistribution of heat, carbon, salt and other water properties; and air-sea exchanges of heat, momentum, freshwater, carbon, and other gasses. Measurements of ocean physics variables are fundamental to reliable earth prediction systems for a range of applications and users. In addition, knowledge of the physical environment is fundamental to growing understanding of the ocean’s biogeochemistry and biological/ecosystem variability and function. Through the progress from OceanObs’99 to OceanObs’09, the ocean observing system has evolved from a platform centric perspective to an integrated observing system. The challenge now is for the observing system to evolve to respond to an increasingly diverse end user group. The Ocean Observations Physics and Climate panel (OOPC), formed in 1995, has undertaken many activities that led to observing system-related agreements. Here, OOPC will explore the opportunities and challenges for the development of a fit-for-purpose, sustained and prioritized ocean observing system, focusing on physical variables that maximize support for fundamental research, climate monitoring, forecasting on different timescales, and society. OOPC recommendations are guided by the Framework for Ocean Observing which emphasizes identifying user requirements by considering time and space scales of the Essential Ocean Variables. This approach provides a framework for reviewing the adequacy of the observing system, looking for synergies in delivering an integrated observing system for a range of applications and focusing innovation in areas where existing technologies do not meet these requirements.
-
ArticleAdequacy of the ocean observation system for quantifying regional heat and freshwater storage and change(Frontiers Media, 2019-08-29) Palmer, Matthew D. ; Durack, Paul J. ; Chidichimo, Maria Paz ; Church, John A. ; Cravatte, Sophie ; Hill, Katherine Louise ; Johannessen, Johnny A. ; Karstensen, Johannes ; Lee, Tong ; Legler, David ; Mazloff, Matthew R. ; Oka, Eitarou ; Purkey, Sarah G. ; Rabe, Benjamin ; Sallee, Jean-Baptiste ; Sloyan, Bernadette M. ; Speich, Sabrina ; von Schuckmann, Karina ; Willis, Josh ; Wijffels, Susan E.Considerable advances in the global ocean observing system over the last two decades offers an opportunity to provide more quantitative information on changes in heat and freshwater storage. Variations in these storage terms can arise through internal variability and also the response of the ocean to anthropogenic climate change. Disentangling these competing influences on the regional patterns of change and elucidating their governing processes remains an outstanding scientific challenge. This challenge is compounded by instrumental and sampling uncertainties. The combined use of ocean observations and model simulations is the most viable method to assess the forced signal from noise and ascertain the primary drivers of variability and change. Moreover, this approach offers the potential for improved seasonal-to-decadal predictions and the possibility to develop powerful multi-variate constraints on climate model future projections. Regional heat storage changes dominate the steric contribution to sea level rise over most of the ocean and are vital to understanding both global and regional heat budgets. Variations in regional freshwater storage are particularly relevant to our understanding of changes in the hydrological cycle and can potentially be used to verify local ocean mass addition from terrestrial and cryospheric systems associated with contemporary sea level rise. This White Paper will examine the ability of the current ocean observing system to quantify changes in regional heat and freshwater storage. In particular we will seek to answer the question: What time and space scales are currently resolved in different regions of the global oceans? In light of some of the key scientific questions, we will discuss the requirements for measurement accuracy, sampling, and coverage as well as the synergies that can be leveraged by more comprehensively analyzing the multi-variable arrays provided by the integrated observing system.
-
ArticleThe transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean(American Geophysical Union, 2020-04-08) Charette, Matthew A. ; Kipp, Lauren ; Jensen, Laramie T. ; Dabrowski, Jessica S. ; Whitmore, Laura M. ; Fitzsimmons, Jessica N. ; Williford, Tatiana ; Ulfsbo, Adam ; Jones, Elizabeth M. ; Bundy, Randelle M. ; Vivancos, Sebastian M. ; Pahnke, Katharina ; John, Seth G. ; Xiang, Yang ; Hatta, Mariko ; Petrova, Mariia V. ; Heimbürger, Lars-Eric ; Bauch, Dorothea ; Newton, Robert ; Pasqualini, Angelica ; Agather, Alison ; Amon, Rainer M. W. ; Anderson, Robert F. ; Andersson, Per S. ; Benner, Ronald ; Bowman, Katlin ; Edwards, R. Lawrence ; Gdaniec, Sandra ; Gerringa, Loes J. A. ; González, Aridane G. ; Granskog, Mats A. ; Haley, Brian ; Hammerschmidt, Chad R. ; Hansell, Dennis A. ; Henderson, Paul B. ; Kadko, David C. ; Kaiser, Karl ; Laan, Patrick ; Lam, Phoebe J. ; Lamborg, Carl H. ; Levier, Martin ; Li, Xianglei ; Margolin, Andrew R. ; Measures, Christopher I. ; Middag, Rob ; Millero, Frank J. ; Moore, Willard S. ; Paffrath, Ronja ; Planquette, Helene ; Rabe, Benjamin ; Reader, Heather ; Rember, Robert ; Rijkenberg, Micha J. A. ; Roy-Barman, Matthieu ; van der Loeff, Michiel Rutgers ; Saito, Mak A. ; Schauer, Ursula ; Schlosser, Peter ; Sherrell, Robert M. ; Shiller, Alan M. ; Slagter, Hans ; Sonke, Jeroen E. ; Stedmon, Colin ; Woosley, Ryan J. ; Valk, Ole ; van Ooijen, Jan ; Zhang, RuifengA major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
-
ArticleIntroduction to the special issue on the new Artic Ocean(Oceanography Society, 2022-12-08) Weingartner, Thomas ; Ashjian, Carin ; Brigham, Lawson ; Haine, Thomas ; Mack, Liza ; Perovich, Don ; Rabe, BenjaminOne hundred and thirty years ago, Fridtjof Nansen, the Norwegian polar explorer and scientist, set off on a bold three-year journey to investigate the unknown Arctic Ocean. The expedition relied on a critical technological development: a small, strong, and maneuverable vessel, powered by sail and an engine, with an endurance of five years for twelve men. His intellectual curiosity and careful observations led to an early glimpse of the Arctic Ocean’s circulation and its unique ecosystem. Some of Nansen’s findings on sea ice and the penetration of Atlantic Water into the Arctic Ocean established a benchmark against which we have measured profound changes over the past few decades. In contrast, little was known about the Arctic Ocean’s ecosystem processes prior to the onset of anthropogenic climate change. Nansen’s successes, which paved the way for subsequent research, were gained in part from Indigenous Greenlanders who taught him how to survive in this harsh environment.
-
ArticlePolar fresh water in a changing global climate: linking Arctic and Southern Ocean processes(Oceanography Society, 2023-05-01) Rabe, Benjamin ; Martin, Torge ; Solomon, Amy ; Assmann, Karen M. ; Biddle, Louise C. ; Haine, Thomas ; Hattermann, Tore ; Haumann, F. Alexander ; Jahn, Alexandra ; Karpouzoglou, Theodoros ; Laukert, Georgi ; Garabato, Alberto Naveira ; Rosenblum, Erica ; Sikes, Elisabeth ; Yin, Liping ; Zhang, XiangdongNORP-SORP Workshop on Polar Fresh Water: Sources, Pathways and Impacts of Freshwater in Northern and Southern Polar Oceans and Seas (SPICE-UP)What: Up to 60 participants at a time and more than twice as many registrants in total from 20 nations and across experience levels met to discuss the current status of research on freshwater in both polar regions, future directions, and synergies between the Arctic and Southern Ocean research communitiesWhen: 19-21 September 2022 Where: Online
-
PreprintAn assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006-2008 period( 2010-12-10) Rabe, Benjamin ; Karcher, Michael ; Schauer, Ursula ; Toole, John M. ; Krishfield, Richard A. ; Pisarev, Sergey ; Kauker, Frank ; Gerdes, Rudiger ; Kikuchi, TakashiUnprecedented summer-season sampling of the Arctic Ocean during the period 2006−2008 makes possible a quasi-synoptic estimate of liquid freshwater (LFW) inventories in the Arctic Ocean basins. In comparison to observations from 1992−1999, LFW content relative to a salinity of 35 in the layer from the surface to the 34 isohaline increased by 8400 ± 2000 km3 in the Arctic Ocean (water depth greater than 500m). This is close to the annual export of freshwater (liquid and solid) from the Arctic Ocean reported in the literature. Observations and a model simulation show regional variations in LFW were both due to changes in the depth of the lower halocline, often forced by regional wind-induced Ekman pumping, and a mean freshening of the water column above this depth, associated with an increased net sea ice melt and advection of increased amounts of river water from the Siberian shelves. Over the whole Arctic Ocean, changes in the observed mean salinity above the 34 isohaline dominated estimated changes in LFW content; the contribution to LFW change by bounding isohaline depth changes was less than a quarter of the salinity contribution, and non-linear effects due to both factors were negligible.