Gorsky Gabriel

No Thumbnail Available
Last Name
Gorsky
First Name
Gabriel
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Expanding Tara oceans protocols for underway, ecosystemic sampling of the ocean-atmosphere interface during Tara Pacific expedition (2016-2018)
    (Frontiers Media, 2019-12-11) Gorsky, Gabriel ; Bourdin, Guillaume ; Lombard, Fabien ; Pedrotti, Maria Luiza ; Audrain, Samuel ; Bin, Nicolas ; Boss, Emmanuel S. ; Bowler, Chris ; Cassar, Nicolas ; Caudan, Loic ; Chabot, Genevieve ; Cohen, Natalie R. ; Cron, Daniel ; De Vargas, Colomban ; Dolan, John R. ; Douville, Eric ; Elineau, Amanda ; Flores, J. Michel ; Ghiglione, Jean-Francois ; Haëntjens, Nils ; Hertau, Martin ; John, Seth G. ; Kelly, Rachel L. ; Koren, Ilan ; Lin, Yajuan ; Marie, Dominique ; Moulin, Clémentine ; Moucherie, Yohann ; Pesant, Stephane ; Picheral, Marc ; Poulain, Julie ; Pujo-Pay, Mireille ; Reverdin, Gilles ; Romac, Sarah ; Sullivan, Mathew B. ; Trainic, Miri ; Tressol, Marc ; Troublé, Romain ; Vardi, Assaf ; Voolstra, Christian R. ; Wincker, Patrick ; Agostini, Sylvain ; Banaigs, Bernard ; Boissin, Emilie ; Forcioli, Didier ; Furla, Paola ; Galand, Pierre E. ; Gilson, Eric ; Reynaud, Stephanie ; Sunagawa, Shinichi ; Thomas, Olivier P. ; Vega Thurber, Rebecca ; Zoccola, Didier ; Planes, Serge ; Allemand, Denis ; Karsenti, Eric
    Interactions between the ocean and the atmosphere occur at the air-sea interface through the transfer of momentum, heat, gases and particulate matter, and through the impact of the upper-ocean biology on the composition and radiative properties of this boundary layer. The Tara Pacific expedition, launched in May 2016 aboard the schooner Tara, was a 29-month exploration with the dual goals to study the ecology of reef ecosystems along ecological gradients in the Pacific Ocean and to assess inter-island and open ocean surface plankton and neuston community structures. In addition, key atmospheric properties were measured to study links between the two boundary layer properties. A major challenge for the open ocean sampling was the lack of ship-time available for work at “stations”. The time constraint led us to develop new underway sampling approaches to optimize physical, chemical, optical, and genomic methods to capture the entire community structure of the surface layers, from viruses to metazoans in their oceanographic and atmospheric physicochemical context. An international scientific consortium was put together to analyze the samples, generate data, and develop datasets in coherence with the existing Tara Oceans database. Beyond adapting the extensive Tara Oceans sampling protocols for high-resolution underway sampling, the key novelties compared to Tara Oceans’ global assessment of plankton include the measurement of (i) surface plankton and neuston biogeography and functional diversity; (ii) bioactive trace metals distribution at the ocean surface and metal-dependent ecosystem structures; (iii) marine aerosols, including biological entities; (iv) geography, nature and colonization of microplastic; and (v) high-resolution underway assessment of net community production via equilibrator inlet mass spectrometry. We are committed to share the data collected during this expedition, making it an important resource important resource to address a variety of scientific questions.
  • Dataset
    JeDI: Jellyfish Database Initiative
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2015-03-09) Condon, Robert H. ; Lucas, Cathy H. ; Duarte, Carlos M. ; Pitt, Kylie A. ; Haddock, Steven H. D. ; Madin, Laurence P. ; Brodeur, Richard D. ; Sutherland, Kelly R. ; Mianzan, Hermes W. ; Purcell, Jennifer E. ; Decker, Mary Beth ; Uye, Shin-Ichi ; Malej, Alenka ; Bogeberg, Molly ; Everett, John T. ; Gibbons, Mark ; Gonzalez, H. ; Hay, S. ; Hensche, N. ; Hobson, R. J. ; Kingsford, Michael J. ; Kremer, P. ; Lehtiniemi, Maiju ; Ohman, Mark ; Rissik, D. ; Sheard, K. ; Suthers, Iain ; Coleman, N. ; Costello, John H. ; Gershwin, L. A. ; Graham, William M. ; Robinson, Kelly L. ; Richardson, T. M. ; Giesecke, R. ; Gorsky, Gabriel ; Greve, Wulf ; Halsband-Lenk, C. ; Hays, Graeme ; Hobson, V. ; Klein, David ; Lebrato, Mario ; Loveridge, Jan ; Martens, P. ; Milos, C. ; Perry, G. ; Stemmann, Lars ; Sullivan, Barbara ; Walker, T. ; Schildhauer, Mark ; Regetz, J.
    The Jellyfish Database Initiative (JeDI) is a scientifically-coordinated global database dedicated to gelatinous zooplankton (members of the Cnidaria, Ctenophora and Thaliacea) and associated environmental data. The database holds 476,000 quantitative, categorical, presence-absence and presence only records of gelatinous zooplankton spanning the past four centuries (1790-2011) assembled from a variety of published and unpublished sources. Gelatinous zooplankton data are reported to species level, where identified, but taxonomic information on phylum, family and order are reported for all records. Other auxiliary metadata, such as physical, environmental and biometric information relating to the gelatinous zooplankton metadata, are included with each respective entry. JeDI has been developed and designed as an open access research tool for the scientific community to quantitatively define the global baseline of gelatinous zooplankton populations and to describe long-term and large-scale trends in gelatinous zooplankton populations and blooms. It has also been constructed as a future repository of datasets, thus allowing retrospective analyses of the baseline and trends in global gelatinous zooplankton populations to be conducted in the future.
  • Article
    Globally consistent quantitative observations of planktonic ecosystems
    (Frontiers Media, 2019-04-25) Lombard, Fabien ; Boss, Emmanuel S. ; Waite, Anya M. ; Vogt, Meike ; Uitz, Julia ; Stemmann, Lars ; Sosik, Heidi M. ; Schulz, Jan ; Romagnan, Jean-Baptiste ; Picheral, Marc ; Pearlman, Jay ; Ohman, Mark D. ; Niehoff, Barbara ; Möller, Klas O. ; Miloslavich, Patricia ; Lara-Lpez, Ana ; Kudela, Raphael M. ; Lopes, Rubens M. ; Kiko, Rainer ; Karp-Boss, Lee ; Jaffe, Jules S. ; Iversen, Morten H. ; Irisson, Jean-Olivier ; Fennel, Katja ; Hauss, Helena ; Guidi, Lionel ; Gorsky, Gabriel ; Giering, Sarah L. C. ; Gaube, Peter ; Gallager, Scott M. ; Dubelaar, George ; Cowen, Robert K. ; Carlotti, François ; Briseño-Avena, Christian ; Berline, Leo ; Benoit-Bird, Kelly J. ; Bax, Nicholas ; Batten, Sonia ; Ayata, Sakina Dorothée ; Artigas, Luis Felipe ; Appeltans, Ward
    In this paper we review the technologies available to make globally quantitative observations of particles in general—and plankton in particular—in the world oceans, and for sizes varying from sub-microns to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical and acoustical methods as well as analysis using particle counters, flow cytometers and quantitative imaging devices. We follow by highlighting the requirements necessary for a plankton observing system, the approach to achieve it and associated challenges. We conclude with ranked action-item recommendations for the next 10 years to move toward our vision of a holistic ocean-wide plankton observing system. Particularly, we suggest to begin with a demonstration project on a GO-SHIP line and/or a long-term observation site and expand from there, ensuring that issues associated with methods, observation tools, data analysis, quality assessment and curation are addressed early in the implementation. Global coordination is key for the success of this vision and will bring new insights on processes associated with nutrient regeneration, ocean production, fisheries and carbon sequestration.
  • Article
    RAPID : research on automated plankton identification
    (Oceanography Society, 2007-06) Benfield, Mark C. ; Grosjean, Philippe ; Culverhouse, Phil F. ; Irigoien, Xabier ; Sieracki, Michael E. ; Lopez-Urrutia, Angel ; Dam, Hans G. ; Hu, Qiao ; Davis, Cabell S. ; Hansen, Allen ; Pilskaln, Cynthia H. ; Riseman, Edward M. ; Schultz, Howard ; Utgoff, Paul E. ; Gorsky, Gabriel
    When Victor Hensen deployed the first true plankton1 net in 1887, he and his colleagues were attempting to answer three fundamental questions: What planktonic organisms are present in the ocean? How many of each type are present? How does the plankton’s composition change over time? Although answering these questions has remained a central goal of oceanographers, the sophisticated tools available to enumerate planktonic organisms today offer capabilities that Hensen probably could never have imagined.