Aster Richard C.

No Thumbnail Available
Last Name
First Name
Richard C.

Search Results

Now showing 1 - 3 of 3
  • Article
    Teleseismic earthquake wavefields observed on the ross ice shelf
    (Cambridge University Press, 2020-10-14) Baker, Michael G. ; Aster, Richard C. ; Wiens, Douglas A. ; Nyblade, Andrew A. ; Bromirski, Peter D. ; Gerstoft, Peter ; Stephen, Ralph A.
    Observations of teleseismic earthquakes using broadband seismometers on the Ross Ice Shelf (RIS) must contend with environmental and structural processes that do not exist for land-sited seismometers. Important considerations are: (1) a broadband, multi-mode ambient wavefield excited by ocean gravity wave interactions with the ice shelf; (2) body wave reverberations produced by seismic impedance contrasts at the ice/water and water/seafloor interfaces and (3) decoupling of the solid Earth horizontal wavefield by the sub-shelf water column. We analyze seasonal and geographic variations in signal-to-noise ratios for teleseismic P-wave (0.5–2.0 s), S-wave (10–15 s) and surface wave (13–25 s) arrivals relative to the RIS noise field. We use ice and water layer reverberations generated by teleseismic P-waves to accurately estimate the sub-station thicknesses of these layers. We present observations consistent with the theoretically predicted transition of the water column from compressible to incompressible mechanics, relevant for vertically incident solid Earth waves with periods longer than 3 s. Finally, we observe symmetric-mode Lamb waves generated by teleseismic S-waves incident on the grounding zones. Despite their complexity, we conclude that teleseismic coda can be utilized for passive imaging of sub-shelf Earth structure, although longer deployments relative to conventional land-sited seismometers will be necessary to acquire adequate data.
  • Article
    Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf
    (Cambridge University Press, 2019-09-30) Baker, Michael G. ; Aster, Richard C. ; Anthony, Robert E. ; Chaput, Julien ; Wiens, Douglas A. ; Nyblade, Andrew A. ; Bromirski, Peter D. ; Gerstoft, Peter ; Stephen, Ralph A.
    The Ross Ice Shelf (RIS) is host to a broadband, multimode seismic wavefield that is excited in response to atmospheric, oceanic and solid Earth source processes. A 34-station broadband seismographic network installed on the RIS from late 2014 through early 2017 produced continuous vibrational observations of Earth's largest ice shelf at both floating and grounded locations. We characterize temporal and spatial variations in broadband ambient wavefield power, with a focus on period bands associated with primary (10–20 s) and secondary (5–10 s) microseism signals, and an oceanic source process near the ice front (0.4–4.0 s). Horizontal component signals on floating stations overwhelmingly reflect oceanic excitations year-round due to near-complete isolation from solid Earth shear waves. The spectrum at all periods is shown to be strongly modulated by the concentration of sea ice near the ice shelf front. Contiguous and extensive sea ice damps ocean wave coupling sufficiently so that wintertime background levels can approach or surpass those of land-sited stations in Antarctica.
  • Article
    The crust and upper mantle structure of central and West Antarctica from Bayesian inversion of Rayleigh Wave and receiver functions
    (John Wiley & Sons, 2018-09-22) Shen, Weisen ; Wiens, Douglas A. ; Anandakrishnan, Sridhar ; Aster, Richard C. ; Gerstoft, Peter ; Bromirski, Peter D. ; Hansen, Samantha E. ; Dalziel, Ian W. D. ; Heeszel, David S. ; Huerta, Audrey D. ; Nyblade, Andrew A. ; Stephen, Ralph A. ; Wilson, Terry J. ; Winberry, J. Paul
    We construct a new seismic model for central and West Antarctica by jointly inverting Rayleigh wave phase and group velocities along with P wave receiver functions. Ambient noise tomography exploiting data from more than 200 seismic stations deployed over the past 18 years is used to construct Rayleigh wave phase and group velocity dispersion maps. Comparison between the ambient noise phase velocity maps with those constructed using teleseismic earthquakes confirms the accuracy of both results. These maps, together with P receiver function waveforms, are used to construct a new 3‐D shear velocity (Vs) model for the crust and uppermost mantle using a Bayesian Monte Carlo algorithm. The new 3‐D seismic model shows the dichotomy of the tectonically active West Antarctica (WANT) and the stable and ancient East Antarctica (EANT). In WANT, the model exhibits a slow uppermost mantle along the Transantarctic Mountains (TAMs) front, interpreted as the thermal effect from Cenozoic rifting. Beneath the southern TAMs, the slow uppermost mantle extends horizontally beneath the traditionally recognized EANT, hypothesized to be associated with lithospheric delamination. Thin crust and lithosphere observed along the Amundsen Sea coast and extending into the interior suggest involvement of these areas in Cenozoic rifting. EANT, with its relatively thick and cold crust and lithosphere marked by high Vs, displays a slower Vs anomaly beneath the Gamburtsev Subglacial Mountains in the uppermost mantle, which we hypothesize may be the signature of a compositionally anomalous body, perhaps remnant from a continental collision.