Dapoigny Arnaud

No Thumbnail Available
Last Name
Dapoigny
First Name
Arnaud
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Hydrological variations of the intermediate water masses of the western Mediterranean Sea during the past 20 ka inferred from neodymium isotopic composition in foraminifera and cold-water corals
    (Copernicus Publications on behalf of the European Geosciences Union, 2017-01-10) Dubois-Dauphin, Quentin ; Montagna, Paolo ; Siani, Giuseppe ; Douville, Eric ; Wienberg, Claudia ; Hebbeln, Dierk ; Liu, Zhifei ; Kallel, Nejib ; Dapoigny, Arnaud ; Revel, Marie ; Pons-Branchu, Edwige ; Taviani, Marco ; Colin, Christophe
    We present the neodymium isotopic composition (εNd) of mixed planktonic foraminifera species from a sediment core collected at 622 m water depth in the Balearic Sea, as well as εNd of scleractinian cold-water corals (CWC; Madrepora oculata, Lophelia pertusa) retrieved between 280 and 442 m water depth in the Alboran Sea and at 414 m depth in the southern Sardinian continental margin. The aim is to constrain hydrological variations at intermediate depths in the western Mediterranean Sea during the last 20 kyr. Planktonic (Globigerina bulloides) and benthic (Cibicidoides pachyderma) foraminifera from the Balearic Sea were also analyzed for stable oxygen (δ18O) and carbon (δ13C) isotopes. The foraminiferal and coral εNd values from the Balearic and Alboran seas are comparable over the last  ∼  13 kyr, with mean values of −8.94 ± 0.26 (1σ; n =  24) and −8.91 ± 0.18 (1σ; n =  25), respectively. Before 13 ka BP, the foraminiferal εNd values are slightly lower (−9.28 ± 0.15) and tend to reflect higher mixing between intermediate and deep waters, which are characterized by more unradiogenic εNd values. The slight εNd increase after 13 ka BP is associated with a decoupling in the benthic foraminiferal δ13C composition between intermediate and deeper depths, which started at  ∼  16 ka BP. This suggests an earlier stratification of the water masses and a subsequent reduced contribution of unradiogenic εNd from deep waters. The CWC from the Sardinia Channel show a much larger scatter of εNd values, from −8.66 ± 0.30 to −5.99 ± 0.50, and a lower average (−7.31 ± 0.73; n =  19) compared to the CWC and foraminifera from the Alboran and Balearic seas, indicative of intermediate waters sourced from the Levantine basin. At the time of sapropel S1 deposition (10.2 to 6.4 ka), the εNd values of the Sardinian CWC become more unradiogenic (−8.38 ± 0.47; n =  3 at  ∼  8.7 ka BP), suggesting a significant contribution of intermediate waters originated from the western basin. We propose that western Mediterranean intermediate waters replaced the Levantine Intermediate Water (LIW), and thus there was a strong reduction of the LIW during the mid-sapropel ( ∼  8.7 ka BP). This observation supports a notable change of Mediterranean circulation pattern centered on sapropel S1 that needs further investigation to be confirmed.
  • Article
    Changes in the intermediate water masses of the Mediterranean Sea during the last climatic cycle-new constraints from neodymium isotopes in foraminifera
    (American Geophysical Union, 2021-02-15) Colin, Christophe ; Duhamel, Maxence ; Siani, Giuseppe ; Dubois-Dauphin, Quentin ; Ducassou, Emmanuelle ; Liu, Zhifei ; Wu, Jiawang ; Revel, Marie ; Dapoigny, Arnaud ; Douville, Eric ; Taviani, Marco ; Montagna, Paolo
    Variations in Mediterranean thermohaline circulation of the Quaternary are still not well constrained whereas they have been considered to have an influence on the Atlantic Meridional Overturning Circulation and on the oxygenation of waters in the deep basins of the Mediterranean Sea. εNd analyses have been carried out on planktonic foraminifera of cores collected in the central Mediterranean Sea to constrain water mass exchange between the Eastern and Western Mediterranean Sea (EMS and WMS) during the last climatic cycle. εNd records from the WMS and EMS display similar higher values during warm substages of interglacial Marine Isotopic Stage (MIS) 1 and 5. This suggests an efficient connection between the two Mediterranean sub-basins and the transfer of radiogenic waters to the Tyrrhenian Sea via the Levantine Intermediate Water (LIW). Conversely, during glacial MIS, εNd of the intermediate depth of the Tyrrhenian Sea are less radiogenic than the EMS, implying limited hydrological connection between sub-basins during low sea-level stands. Superimposed on these glacial-interglacial variations, increased εNd occurred during Heinrich Stadial events. This suggests a reduction in the formation of unradiogenic WIW in the Gulf of Lions due to the input of relatively fresh surface Atlantic water to the WMS and/or the inflow of radiogenic glacial LIW and upper EMDW to the Tyrrhenian Sea as a result of an active EMS convection related to saltier and colder conditions. Such potential millennial-scale pulses of LIW intrusion into the Tyrrhenian Sea may have led to an enhanced Mediterranean Outflow Water intensity in the Gibraltar Strait.