Wadhams Peter

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 4 of 4
  • Article
    Overview of the Arctic Sea state and boundary layer physics program
    (American Geophysical Union, 2018-04-16) Thomson, Jim ; Ackley, Stephen ; Girard-Ardhuin, Fanny ; Ardhuin, Fabrice ; Babanin, Alexander ; Boutin, Guillaume ; Brozena, John ; Cheng, Sukun ; Collins, Clarence ; Doble, Martin ; Fairall, Christopher W. ; Guest, Peter ; Gebhardt, Claus ; Gemmrich, Johannes ; Graber, Hans C. ; Holt, Benjamin ; Lehner, Susanne ; Lund, Björn ; Meylan, Michael ; Maksym, Ted ; Montiel, Fabien ; Perrie, Will ; Persson, Ola ; Rainville, Luc ; Rogers, W. Erick ; Shen, Hui ; Shen, Hayley ; Squire, Vernon ; Stammerjohn, Sharon E. ; Stopa, Justin ; Smith, Madison M. ; Sutherland, Peter ; Wadhams, Peter
    A large collaborative program has studied the coupled air‐ice‐ocean‐wave processes occurring in the Arctic during the autumn ice advance. The program included a field campaign in the western Arctic during the autumn of 2015, with in situ data collection and both aerial and satellite remote sensing. Many of the analyses have focused on using and improving forecast models. Summarizing and synthesizing the results from a series of separate papers, the overall view is of an Arctic shifting to a more seasonal system. The dramatic increase in open water extent and duration in the autumn means that large surface waves and significant surface heat fluxes are now common. When refreezing finally does occur, it is a highly variable process in space and time. Wind and wave events drive episodic advances and retreats of the ice edge, with associated variations in sea ice formation types (e.g., pancakes, nilas). This variability becomes imprinted on the winter ice cover, which in turn affects the melt season the following year.
  • Article
    Emerging trends in the sea state of the Beaufort and Chukchi seas
    (Elsevier, 2016-07-06) Thomson, James M. ; Fan, Yalin ; Stammerjohn, Sharon E. ; Stopa, Justin ; Rogers, W. Erick ; Girard-Ardhuin, Fanny ; Ardhuin, Fabrice ; Shen, Hayley ; Perrie, Will ; Shen, Hui ; Ackley, Stephen ; Babanin, Alexander ; Liu, Qingxiang ; Guest, Peter ; Maksym, Ted ; Wadhams, Peter ; Fairall, Christopher W. ; Persson, Ola ; Doble, Martin J. ; Graber, Hans C. ; Lund, Bjoern ; Squire, Vernon ; Gemmrich, Johannes ; Lehner, Susanne ; Holt, Benjamin ; Meylan, Michael ; Brozena, John ; Bidlot, Jean-Raymond
    The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.
  • Article
    Winter-to-summer transition of Arctic sea ice breakup and floe size distribution in the Beaufort Sea
    (University of California Press, 2017-07-26) Hwang, Byongjun ; Wilkinson, Jeremy P. ; Maksym, Ted ; Graber, Hans C. ; Schweiger, Axel ; Horvat, Christopher ; Perovich, Donald K. ; Arntsen, Alexandra ; Stanton, Timothy P. ; Ren, Jinchang ; Wadhams, Peter
    Breakup of the near-continuous winter sea ice into discrete summer ice floes is an important transition that dictates the evolution and fate of the marginal ice zone (MIZ) of the Arctic Ocean. During the winter of 2014, more than 50 autonomous drifting buoys were deployed in four separate clusters on the sea ice in the Beaufort Sea, as part of the Office of Naval Research MIZ program. These systems measured the ocean-ice-atmosphere properties at their location whilst the sea ice parameters in the surrounding area of these buoy clusters were continuously monitored by satellite TerraSAR-X Synthetic Aperture Radar. This approach provided a unique Lagrangian view of the winter-to-summer transition of sea ice breakup and floe size distribution at each cluster between March and August. The results show the critical timings of a) temporary breakup of winter sea ice coinciding with strong wind events and b) spring breakup (during surface melt, melt ponding and drainage) leading to distinctive summer ice floes. Importantly our results suggest that summer sea ice floe distribution is potentially affected by the state of winter sea ice, including the composition and fracturing (caused by deformation events) of winter sea ice, and that substantial mid-summer breakup of sea ice floes is likely linked to the timing of thermodynamic melt of sea ice in the area. As the rate of deformation and thermodynamic melt of sea ice has been increasing in the MIZ in the Beaufort Sea, our results suggest that these elevated factors would promote faster and more enhanced breakup of sea ice, leading to a higher melt rate of sea ice and thus a more rapid advance of the summer MIZ.
  • Article
    Robust wavebuoys for the marginal ice zone : experiences from a large persistent array in the Beaufort Sea
    (University of California Press, 2017-08-21) Doble, Martin J. ; Wilkinson, Jeremy P. ; Valcic, Lovro ; Robst, Jeremy ; Tait, Andrew ; Preston, Mark ; Bidlot, Jean-Raymond ; Hwang, Byongjun ; Maksym, Ted ; Wadhams, Peter
    An array of novel directional wavebuoys was designed and deployed into the Beaufort Sea ice cover in March 2014, as part of the Office of Naval Research Marginal Ice Zone experiment. The buoys were designed to drift with the ice throughout the year and monitor the expected breakup and retreat of the ice cover, forced by waves travelling into the ice from open water. Buoys were deployed from fast-and-light air-supported ice camps, based out of Sachs Harbour on Canada’s Banks Island, and drifted westwards with the sea ice over the course of spring, summer and autumn, as the ice melted, broke up and finally re-froze. The buoys transmitted heave, roll and pitch timeseries at 1 Hz sample frequency over the course of up to eight months, surviving both convergent ice dynamics and significant waves-in-ice events. Twelve of the 19 buoys survived until their batteries were finally exhausted during freeze-up in late October/November. Ice impact was found to have contaminated a significant proportion of the Kalman-filter-derived heave records, and these bad records were removed with reference to raw x/y/z accelerations. The quality of magnetometer-derived buoy headings at the very high magnetic field inclinations close to the magnetic pole was found to be generally acceptable, except in the case of four buoys which had probably suffered rough handling during transport to the ice. In general, these new buoys performed as expected, though vigilance as to the veracity of the output is required.