Orr James C.

No Thumbnail Available
Last Name
Orr
First Name
James C.
ORCID

Search Results

Now showing 1 - 9 of 9
  • Article
    Comment on “Modern-age buildup of CO2 and its effects on seawater acidity and salinity” by Hugo A. Loáiciga
    (American Geophysical Union, 2007-09-25) Caldeira, Ken ; Archer, David ; Barry, James P. ; Bellerby, Richard G. J. ; Brewer, Peter G. ; Cao, Long ; Dickson, Andrew G. ; Doney, Scott C. ; Elderfield, Henry ; Fabry, Victoria J. ; Feely, Richard A. ; Gattuso, Jean-Pierre ; Haugan, Peter M. ; Hoegh-Guldberg, Ove ; Jain, Atul K. ; Kleypas, Joan A. ; Langdon, Chris ; Orr, James C. ; Ridgwell, Andy ; Sabine, Christopher L. ; Seibel, Brad A. ; Shirayama, Yoshihisa ; Turley, Carol ; Watson, Andrew J. ; Zeebe, Richard E.
  • Preprint
    Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms
    ( 2005-07-29) Orr, James C. ; Fabry, Victoria J. ; Aumont, Olivier ; Bopp, Laurent ; Doney, Scott C. ; Feely, Richard A. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Key, Robert M. ; Lindsay, Keith ; Maier-Reimer, Ernst ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Plattner, Gian-Kasper ; Rodgers, Keith B. ; Sabine, Christopher L. ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    The surface ocean is everywhere saturated with respect to calcium carbonate (CaCO3). Yet increasing atmospheric CO2 reduces ocean pH and carbonate ion concentrations [CO32−] and thus the level of saturation. Reduced saturation states are expected to affect marine calcifiers even though it has been estimated that all surface waters will remain saturated for centuries. Here we show, however, that some surface waters will become undersaturated within decades. When atmospheric CO2 reaches 550 ppmv, in year 2050 under the IS92a business-as-usual scenario, Southern Ocean surface waters begin to become undersaturated with respect to aragonite, a metastable form of CaCO3. By 2100 as atmospheric CO2 reaches 788 ppmv, undersaturation extends throughout the entire Southern Ocean (< 60°S) and into the subarctic Pacific. These changes will threaten high-latitude aragonite secreting organisms including cold-water corals, which provide essential fish habitat, and shelled pteropods, an abundant food source for marine predators.
  • Article
    Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk
    (Copernicus Publications on behalf of the European Geosciences Union, 2014-12-11) Gehlen, M. ; Seferian, Roland ; Jones, Daniel O. B. ; Roy, T. ; Roth, R. ; Barry, James P. ; Bopp, Laurent ; Doney, Scott C. ; Dunne, John P. ; Heinze, Christoph ; Joos, Fortunat ; Orr, James C. ; Resplandy, L. ; Segschneider, J. ; Tjiputra, Jerry
    This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding −0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding −0.2 (−0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts – including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.
  • Article
    Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)
    (Copernicus Publications on behalf of the European Geosciences Union, 2017-06-09) Orr, James C. ; Najjar, Raymond G. ; Aumont, Olivier ; Bopp, Laurent ; Bullister, John L. ; Danabasoglu, Gokhan ; Doney, Scott C. ; Dunne, John P. ; Dutay, Jean-Claude ; Graven, Heather ; Griffies, Stephen M. ; John, Jasmin G. ; Joos, Fortunat ; Levin, Ingeborg ; Lindsay, Keith ; Matear, Richard J. ; McKinley, Galen A. ; Mouchet, Anne ; Oschlies, Andreas ; Romanou, Anastasia ; Schlitzer, Reiner ; Tagliabue, Alessandro ; Tanhua, Toste ; Yool, Andrew
    The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
  • Article
    Evaluation of ocean carbon cycle models with data-based metrics
    (American Geophysical Union, 2004-04-02) Matsumoto, K. ; Sarmiento, Jorge L. ; Key, Robert M. ; Aumont, Olivier ; Bullister, John L. ; Caldeira, Ken ; Campin, J.-M. ; Doney, Scott C. ; Drange, Helge ; Dutay, J.-C. ; Follows, Michael J. ; Gao, Y. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Lindsay, Keith ; Maier-Reimer, Ernst ; Marshall, John C. ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Plattner, Gian-Kasper ; Schlitzer, Reiner ; Slater, Richard D. ; Swathi, P. S. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew ; Orr, James C.
    New radiocarbon and chlorofluorocarbon-11 data from the World Ocean Circulation Experiment are used to assess a suite of 19 ocean carbon cycle models. We use the distributions and inventories of these tracers as quantitative metrics of model skill and find that only about a quarter of the suite is consistent with the new data-based metrics. This should serve as a warning bell to the larger community that not all is well with current generation of ocean carbon cycle models. At the same time, this highlights the danger in simply using the available models to represent the state-of-the-art modeling without considering the credibility of each model.
  • Article
    Evaluating global ocean carbon models : the importance of realistic physics
    (American Geophysical Union, 2004-09-15) Doney, Scott C. ; Lindsay, Keith ; Caldeira, Ken ; Campin, J.-M. ; Drange, Helge ; Dutay, J.-C. ; Follows, Michael J. ; Gao, Y. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Madec, G. ; Maier-Reimer, Ernst ; Marshall, John C. ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Orr, James C. ; Plattner, Gian-Kasper ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    A suite of standard ocean hydrographic and circulation metrics are applied to the equilibrium physical solutions from 13 global carbon models participating in phase 2 of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Model-data comparisons are presented for sea surface temperature and salinity, seasonal mixed layer depth, meridional heat and freshwater transport, 3-D hydrographic fields, and meridional overturning. Considerable variation exists among the OCMIP-2 simulations, with some of the solutions falling noticeably outside available observational constraints. For some cases, model-model and model-data differences can be related to variations in surface forcing, subgrid-scale parameterizations, and model architecture. These errors in the physical metrics point to significant problems in the underlying model representations of ocean transport and dynamics, problems that directly affect the OCMIP predicted ocean tracer and carbon cycle variables (e.g., air-sea CO2 flux, chlorofluorocarbon and anthropogenic CO2 uptake, and export production). A substantial fraction of the large model-model ranges in OCMIP-2 biogeochemical fields (±25–40%) represents the propagation of known errors in model physics. Therefore the model-model spread likely overstates the uncertainty in our current understanding of the ocean carbon system, particularly for transport-dominated fields such as the historical uptake of anthropogenic CO2. A full error assessment, however, would need to account for additional sources of uncertainty such as more complex biological-chemical-physical interactions, biases arising from poorly resolved or neglected physical processes, and climate change.
  • Article
    Multiple stressors of ocean ecosystems in the 21st century : projections with CMIP5 models
    (Copernicus Publications on behalf of the European Geosciences Union, 2013-10-02) Bopp, Laurent ; Resplandy, L. ; Orr, James C. ; Doney, Scott C. ; Dunne, John P. ; Gehlen, M. ; Halloran, P. ; Heinze, Christoph ; Ilyina, Tatiana ; Seferian, Roland ; Tjiputra, Jerry ; Vichi, Marcello
    Ocean ecosystems are increasingly stressed by human-induced changes of their physical, chemical and biological environment. Among these changes, warming, acidification, deoxygenation and changes in primary productivity by marine phytoplankton can be considered as four of the major stressors of open ocean ecosystems. Due to rising atmospheric CO2 in the coming decades, these changes will be amplified. Here, we use the most recent simulations performed in the framework of the Coupled Model Intercomparison Project 5 to assess how these stressors may evolve over the course of the 21st century. The 10 Earth system models used here project similar trends in ocean warming, acidification, deoxygenation and reduced primary productivity for each of the IPCC's representative concentration pathways (RCPs) over the 21st century. For the "business-as-usual" scenario RCP8.5, the model-mean changes in the 2090s (compared to the 1990s) for sea surface temperature, sea surface pH, global O2 content and integrated primary productivity amount to +2.73 (±0.72) °C, −0.33 (±0.003) pH unit, −3.45 (±0.44)% and −8.6 (±7.9)%, respectively. For the high mitigation scenario RCP2.6, corresponding changes are +0.71 (±0.45) °C, −0.07 (±0.001) pH unit, −1.81 (±0.31)% and −2.0 (±4.1)%, respectively, illustrating the effectiveness of extreme mitigation strategies. Although these stressors operate globally, they display distinct regional patterns and thus do not change coincidentally. Large decreases in O2 and in pH are simulated in global ocean intermediate and mode waters, whereas large reductions in primary production are simulated in the tropics and in the North Atlantic. Although temperature and pH projections are robust across models, the same does not hold for projections of subsurface O2 concentrations in the tropics and global and regional changes in net primary productivity. These high uncertainties in projections of primary productivity and subsurface oxygen prompt us to continue inter-model comparisons to understand these model differences, while calling for caution when using the CMIP5 models to force regional impact models.
  • Article
    Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean : results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2)
    (American Geophysical Union, 2007-08-08) Najjar, Raymond G. ; Jin, X. ; Louanchi, F. ; Aumont, Olivier ; Caldeira, Ken ; Doney, Scott C. ; Dutay, J.-C. ; Follows, Michael J. ; Gruber, Nicolas ; Joos, Fortunat ; Lindsay, Keith ; Maier-Reimer, Ernst ; Matear, Richard J. ; Matsumoto, K. ; Monfray, Patrick ; Mouchet, Anne ; Orr, James C. ; Plattner, Gian-Kasper ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. A common, simple biogeochemical model is utilized in different coarse-resolution ocean circulation models. The model mean (±1σ) downward flux of organic matter across 75 m depth is 17 ± 6 Pg C yr−1. Model means of globally averaged particle export, the fraction of total export in dissolved form, surface semilabile dissolved organic carbon (DOC), and seasonal net outgassing (SNO) of oxygen are in good agreement with observation-based estimates, but particle export and surface DOC are too high in the tropics. There is a high sensitivity of the results to circulation, as evidenced by (1) the correlation of surface DOC and export with circulation metrics, including chlorofluorocarbon inventory and deep-ocean radiocarbon, (2) very large intermodel differences in Southern Ocean export, and (3) greater export production, fraction of export as DOM, and SNO in models with explicit mixed layer physics. However, deep-ocean oxygen, which varies widely among the models, is poorly correlated with other model indices. Cross-model means of several biogeochemical metrics show better agreement with observation-based estimates when restricted to those models that best simulate deep-ocean radiocarbon. Overall, the results emphasize the importance of physical processes in marine biogeochemical modeling and suggest that the development of circulation models can be accelerated by evaluating them with marine biogeochemical metrics.
  • Article
    Towards improved socio-economic assessments of ocean acidification’s impacts
    (Springer, 2012-08-21) Hilmi, Nathalie ; Allemand, Denis ; Dupont, Sam ; Safa, Alain ; Haraldsson, Gunnar ; Nunes, Paulo A. L. D. ; Moore, Chris ; Hattam, Caroline ; Reynaud, Stephanie ; Hall-Spencer, Jason M. ; Fine, Maoz ; Turley, Carol ; Jeffree, Ross ; Orr, James C. ; Munday, Philip L. ; Cooley, Sarah R.
    Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.