Lazarov
Marina
Lazarov
Marina
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
PreprintSulfide enrichment at an oceanic crust-mantle transition zone : Kane Megamullion (23°N, MAR)( 2018-03) Ciazela, Jakub ; Koepke, Juergen ; Dick, Henry J. B. ; Botcharnikov, Roman ; Muszynski, Andrzej ; Lazarov, Marina ; Schuth, Stephan ; Pieterek, Bartosz ; Kuhn, ThomasThe Kane Megamullion oceanic core complex located along the Mid-Atlantic Ridge (23°30′N, 45°20′W) exposes lower crust and upper mantle directly on the ocean floor. We studied chalcophile elements and sulfides in the ultramafic and mafic rocks of the crust-mantle transition and the mantle underneath. We determined mineralogical and elemental composition and the Cu isotope composition of the respective sulfides along with the mineralogical and elemental composition of the respective serpentines. The rocks of the crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro contacts, and dunite) overlaid by troctolites are by one order of magnitude enriched in several chalcophile elements with respect to the spinel harzburgites of the mantle beneath. Whereas the range of Cu concentrations in spinel harzburgites is 7–69 ppm, the Cu concentrations are highly elevated in plagioclase harzburgites with a range of 90–209 ppm. The zones of the peridotite-gabbro contacts are even more enriched, exhibiting up to 305 ppm Cu and highly elevated concentrations of As, Zn, Ga, Sb and Tl. High Cu concentrations show pronounced correlation with bulk S concentrations at the crust-mantle transition zone implying an enrichment process in this horizon of the oceanic lithosphere. We interpret this enrichment as related to melt-mantle reaction, which is extensive in crust-mantle transition zones. In spite of the ubiquitous serpentinization of primary rocks, we found magmatic chalcopyrites [CuFeS2] as inclusions in plagioclase as well as associated with pentlandite [(Fe,Ni)9S8] and pyrrhotite [Fe1−xS] in polysulfide grains. These chalcopyrites show a primary magmatic δ65Cu signature ranging from −0.04 to +0.29 ‰. Other chalcopyrites have been dissolved during serpentinization. Due to the low temperature (<300 °C) of circulating fluids chalcophile metals from primary sulfides have not been mobilized and transported away but have been trapped in smaller secondary sulfides and hydroxides. Combined with the Cu deposits documented in the crust-mantle transition zones of various ophiolite complexes, our results indicate that the metal enrichment, increased sulfide modes, and potentially formation of small sulfide deposits could be expected globally along the petrological Moho.
-
ArticleSulfide enrichment along igneous layer boundaries in the lower oceanic crust: IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge(Elsevier, 2022-02-01) Pieterek, Bartosz ; Ciazela, Jakub ; Boulanger, Marine ; Lazarov, Marina ; Wegorzewski, Anna V. ; Pańczyk, Magdalena ; Strauss, Harald ; Dick, Henry J. B. ; Muszynski, Andrzej ; Koepke, Juergen ; Kuhn, Thomas ; Czupy, Zbigniew ; France, LydéricReactive porous or focused melt flows are common in crystal mushes of mid-ocean ridge magma reservoirs. Although they exert significant control on mid-ocean ridge magmatic differentiation, their role in metal transport between the mantle and the ocean floor remains poorly constrained. Here we aim to improve such knowledge for oceanic crust formed at slow-spreading centers (approximately half of present-day oceanic crust), by focusing on specific igneous features where sulfides are concentrated. International Ocean Discovery Program (IODP) Expedition 360 drilled Hole U1473A 789 m into the lower crust of the Atlantis Bank oceanic core complex, located at the Southwest Indian Ridge. Coarse-grained (5–30 mm) olivine gabbro prevailed throughout the hole, ranging locally from fine- (<1 mm), to very coarse-grained (>30 mm). We studied three distinct intervals of igneous grain size layering at 109.5–110.8, 158.0–158.3, and 593.0–594.4 meters below seafloor to understand the distribution of sulfides. We found that the layer boundaries between the fine- and coarse-grained gabbro were enriched in sulfides and chalcophile elements. On average, sulfide grains throughout the layering were composed of pyrrhotite (81 vol.%; Fe1-xS), chalcopyrite (16 vol.%; CuFeS2), and pentlandite (3 vol.%; [Ni,Fe,Co]9S8), which reflect paragenesis of magmatic origin. The sulfides were most commonly associated with Fe-Ti oxides (titanomagnetites and ilmenites), amphiboles, and apatites located at the interstitial positions between clinopyroxene, plagioclase, and olivine. Pentlandite exsolution textures in pyrrhotite indicate that the sulfides formed from high-temperature sulfide liquid separated from mafic magma that exsolved upon cooling. The relatively homogenous phase proportion within sulfides along with their chemical and isotopic compositions throughout the studied intervals further support the magmatic origin of sulfide enrichment at the layer boundaries. The studied magmatic layers were likely formed as a result of intrusion of more primitive magma (fine-grained gabbro) into the former crystal mush (coarse-grained gabbro). Sulfides from the coarse-grained gabbros are Ir-Platinum Group Element-rich (PGE; i.e., Ir, Os, Ru) but those from the fine-grained gabbros are Pd-PGE-rich (i.e., Pd, Pt, Rh). Notably, the sulfides from the layer boundaries are also enriched in Pd-PGEs, and therefore elevated sulfide contents at the boundaries were likely related to the new intruding melt. Because S concentration at sulfide saturation level is dependent on the Fe content of the melt, sulfide crystallization may have been caused by FeO loss, both via crystallization of late-precipitating oxides at the boundaries, and by exchange of Fe and Mg between melt and Fe-bearing silicates (olivine and clinopyroxene). The increased precipitation of sulfide grains at the layer boundaries might be widespread in the lower oceanic crust, as also observed in the Semail ophiolite and along the Mid-Atlantic Ridge. Therefore, this process might affect the metal budget of the global lower oceanic crust. We estimate that up to ∼20% of the Cu, ∼8% of the S, and ∼84% of the Pb of the oceanic crust inventory is accumulated at the layer boundaries only from the interaction between crystal mush and new magma.