Sanfilippo Alessio

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 5 of 5
  • Article
    Dynamic accretion beneath a slow-spreading ridge segment: IODP hole 1473A and the Atlantis Bank oceanic core complex
    (American Geophysical Union, 2019-11-07) Dick, Henry J. B. ; MacLeod, Christopher J. ; Blum, Peter ; Abe, Natsue ; Blackman, Donna K. ; Bowles, Julie A. ; Cheadle, Michael J. ; Cho, K. ; Ciazela, Jakub ; Deans, Jeremy ; Edgcomb, Virginia P. ; Ferrando, Carlotta ; France, Lydéric ; Ghosh, Biswajit ; Ildefonse, Benoit ; John, Barbara E. ; Kendrick, Mark A. ; Koepke, Juergen ; Leong, James ; Liu, Chuanzhou ; Ma, Qiang ; Morishita, Tomoaki ; Morris, Antony ; Natland, James H. ; Nozaka, Toshio ; Pluemper, Oliver ; Sanfilippo, Alessio ; Sylvan, Jason B. ; Tivey, Maurice A. ; Tribuzio, Riccardo ; Viegas, G.
    809 deep IODP Hole U1473A at Atlantis Bank, SWIR, is 2.2 km from 1,508‐m Hole 735B and 1.4 from 158‐m Hole 1105A. With mapping, it provides the first 3‐D view of the upper levels of a 660‐km2 lower crustal batholith. It is laterally and vertically zoned, representing a complex interplay of cyclic intrusion, and ongoing deformation, with kilometer‐scale upward and lateral migration of interstial melt. Transform wall dives over the gabbro‐peridotite contact found only evolved gabbro intruded directly into the mantle near the transform. There was no high‐level melt lens, rather the gabbros crystallized at depth, and then emplaced into the zone of diking by diapiric rise of a crystal mush followed by crystal‐plastic deformation and faulting. The residues to mass balance the crust to a parent melt composition lie at depth below the center of the massif—likely near the crust‐mantle boundary. Thus, basalts erupted to the seafloor from >1,550 mbsf. By contrast, the Mid‐Atlantic Ridge lower crust drilled at 23°N and at Atlantis Massif experienced little high‐temperature deformation and limited late‐stage melt transport. They contain primitive cumulates and represent direct intrusion, storage, and crystallization of parental MORB in thinner crust below the dike‐gabbro transition. The strong asymmetric spreading of the SWIR to the south was due to fault capture, with the northern rift valley wall faults cutoff by a detachment fault that extended across most of the zone of intrusion. This caused rapid migration of the plate boundary to the north, while the large majority of the lower crust to spread south unroofing Atlantis Bank and uplifting it into the rift mountains.
  • Article
    Development and evolution of detachment faulting along 50 km of the Mid-Atlantic Ridge near 16.5°N
    (John Wiley & Sons, 2014-12-05) Smith, Deborah K. ; Schouten, Hans A. ; Dick, Henry J. B. ; Cann, Johnson R. ; Salters, Vincent J. M. ; Marschall, Horst R. ; Ji, Fuwu ; Yoerger, Dana R. ; Sanfilippo, Alessio ; Parnell-Turner, Ross ; Palmiotto, Camilla ; Zheleznov, Alexei ; Bai, Hailong ; Junkin, Will ; Urann, Ben ; Dick, Spencer ; Sulanowska, Margaret ; Lemmond, Peter ; Curry, Scott
    A multifaceted study of the slow spreading Mid-Atlantic Ridge (MAR) at 16.5°N provides new insights into detachment faulting and its evolution through time. The survey included regional multibeam bathymetry mapping, high-resolution mapping using AUV Sentry, seafloor imaging using the TowCam system, and an extensive rock-dredging program. At different times, detachment faulting was active along ∼50 km of the western flank of the study area, and may have dominated spreading on that flank for the last 5 Ma. Detachment morphologies vary and include a classic corrugated massif, noncorrugated massifs, and back-tilted ridges marking detachment breakaways. High-resolution Sentry data reveal a new detachment morphology; a low-angle, irregular surface in the regional bathymetry is shown to be a finely corrugated detachment surface (corrugation wavelength of only tens of meters and relief of just a few meters). Multiscale corrugations are observed 2–3 km from the detachment breakaway suggesting that they formed in the brittle layer, perhaps by anastomosing faults. The thin wedge of hanging wall lavas that covers a low-angle (6°) detachment footwall near its termination are intensely faulted and fissured; this deformation may be enhanced by the low angle of the emerging footwall. Active detachment faulting currently is limited to the western side of the rift valley. Nonetheless, detachment fault morphologies also are present over a large portion of the eastern flank on crust >2 Ma, indicating that within the last 5 Ma parts of the ridge axis have experienced periods of two-sided detachment faulting.
  • Article
    Emplacement and high-temperature evolution of gabbros of the 16.5 degrees N oceanic core complexes (Mid-Atlantic Ridge): Insights into the compositional variability of the lower oceanic crust.
    (American Geophysical Union, 2018-12-05) Sanfilippo, Alessio ; Dick, Henry JB ; Marschall, Horst R. ; Lissenberg, C. Johan ; Urann, Ben
    This study reports the composition of the oceanic crust from the 16.5°N region of the Mid‐Atlantic Ridge, a spreading ridge segment characterized by a complex detachment fault system and three main oceanic core complexes (southern, central, and northern OCCs). Lithologies recovered from the core complexes include both greenschist facies and weathered pillow basalt, diabase, peridotite, and gabbro, while only weathered and fresh pillow basalt was dredged from the rift valley floor. The gabbros are compositionally bimodal, with the magmatic crust in the region formed by scattered intrusions of chemically primitive plutonic rocks (i.e., dunites and troctolites), associated with evolved oxide‐bearing gabbros. We use thermodynamic models to infer that this distribution is expected in regions where small gabbroic bodies are intruded into mantle peridotites. The occurrence of ephemeral magma chambers located in the lithospheric mantle enables large proportions of the melt to be erupted after relatively low degrees of fractionation. A large proportion of the dredged gabbros reveal evidence for deformation at high‐temperature conditions. In particular, chemical changes in response to deformation and the occurrence of very high‐temperature ultramylonites (>1000 °C) suggest that the deformation related to the oceanic detachment commenced at near‐solidus conditions. This event was likely associated with the expulsion of interstitial, evolved magmas from the crystal mush, a mechanism that enhanced the formation of disconnected oxide‐gabbro seams or layers often associated with crystal‐plastic fabrics in the host gabbros. This granulite‐grade event was soon followed by hydrothermal alteration revealed by the formation of amphibole‐rich veins at high‐temperature conditions (~900 °C).
  • Article
    High-temperature strain localization and the nucleation of oceanic core complexes (16.5 degrees N, Mid-Atlantic Ridge)
    (American Geophysical Union, 2021-08-26) Casini, Leonardo ; Maino, Matteo ; Sanfilippo, Alessio ; Ildefonse, Benoit ; Dick, Henry J. B.
    Extension at slow to ultraslow midoceanic ridges is mostly accommodated by large detachment faults that expose mantle peridotite and/or lower-crustal rocks forming Oceanic Core Complexes (OCC). It is commonly accepted that OCC at slow spreading ridges form during the early stage of crystallization of the magmatic crust, when rocks are still close to their solidus temperature. This observation poses significant problems, as nucleation of detachment faults requires significant weakening, which instead is more easily obtained at low temperature. The RV Knorr cruise 210 Leg 5 on the 16.5°N OCC of the Mid-Atlantic Ridge recovered a narrow shear zone from the plutonic footwall of a mature detachment fault. Troctolites preserve a continuous transition from proto-mylonite to mylonite and ultra-mylonite equilibrated at temperature between 1100° and 900°C. EBSD analysis highlights increased phase mixing and weaker crystallographic fabrics in the ultra-mylonite with respect the mylonitic domains. While host troctolites were completely solidified at the deformation incoming, high-strain zones preserve evidences of syn-kinematic melt-related textures. Fabric patterns combined with plagioclase and olivine grain size piezometry and 1D rheological modeling indicate that the development of ultra-mylonite requires a switch from dislocation creep to melt-enhanced grain-boundary sliding. Activation of this mechanism was promoted by the occurrence of hydrous melt possibly produced by selective re-melting of plagioclase + Ti-pargasite microdomains in response to strain localization at subseismic strain rates. This study highlights the importance of hydrated magmatic phases to promote the onset of detachment faulting in OCC.
  • Article
    Occurrence of felsic rocks in oceanic gabbros from IODP hole U1473A: Implications for evolved melt migration in the lower oceanic crust.
    ( 2018-12-20) Nguyen, Du Khac ; Morishita, Tomoaki ; Soda, Yusuke ; Tamura, Akihiro ; Ghosh, Biswajit ; Harigane, Yumiko ; France, Lydéric ; Liu, Chuanzhou ; Natland, James H. ; Sanfilippo, Alessio ; MacLeod, Christopher J. ; Blum, Peter ; Dick, Henry J. B.
    Felsic rocks are minor in abundance but occur ubiquitously in International Ocean Discovery Program Hole U1473A, Southwest Indian Ridge. The trace element abundances of high-Ti brown amphibole, plagioclase, and zircon in veins, as well as the presence of myrmekitic texture in the studied felsic rocks support crystallization origin from highly-evolved melts, probably controlled by fractional crystallization. Based on geochemical criteria and texture of the mineral assemblage in felsic rocks and their relationship with host gabbros, they can be divided into three types: (1) Felsic rock with sharp boundaries is formed when felsic melt intrudes into fractures of host gabbros, resulting in minimal interaction between the melt and the wall minerals. (2) Replacive felsic rock, which is characterized by a pseudomorphic replacement of minerals in the host gabbro. This vein type is caused by the replacement of the host mineralogy by minerals in equilibrium with the felsic melts. (3) Felsic rock with diffused boundaries is formed either by infiltration of felsic melt into the solidifying gabbro body or crystallization of interstitial melts. Infiltration modes of felsic melts are likely controlled by the temperature condition of the cooling host gabbros.