Chanton Jeffrey P.

No Thumbnail Available
Last Name
First Name
Jeffrey P.

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Assessment of groundwater discharges into West Neck Bay, New York, via natural tracers
    ( 2006-05-21) Dulaiova, Henrieta ; Burnett, William C. ; Chanton, Jeffrey P. ; Moore, Willard S. ; Bokuniewicz, Henry J. ; Charette, Matthew A. ; Sholkovitz, Edward R.
    A field experiment to compare methods of assessing submarine groundwater discharge (SGD) was held on Shelter Island, NY, in May 2002. We evaluated the use of radon, radium isotopes, and methane to assess SGD rates and dynamics from a glacial aquifer in the coastal zone. Fluxes of radon across the sediment-water interface were calculated from changes in measured surface water inventories following evaluation and correction for tidal effects, atmospheric evasion, and mixing with offshore waters. These fluxes were then converted to SGD rates using the measured radon concentration in the groundwater. We used the short-lived radium isotopes to calculate a horizontal mixing coefficient to assess radon loss by mixing between nearshore and offshore waters. We also made an independent calculation of SGD using the Ra-derived mixing coefficient and the long-lived 226Ra concentration gradient in the bay. Seepage rates were calculated to range between 0 and 34 using the radon measurements and 15 as indicated by the radium isotopes. The radiotracer results were consistent and comparable to SGD rates measured directly with vented benthic chambers (seepage meters) deployed during this experiment. These meters indicated rates between 2 and 200 depending on their location. Both the calculated radon fluxes and rates measured directly by the automated seepage meters revealed a clear reproducible pattern of higher fluxes during low tides. Considering that the two techniques are completely independent, the agreement in the SGD dynamics is significant. Methane concentration in groundwater was very low (~30 nM) and not suitable as SGD tracer at this study site.
  • Article
    Carbon accumulation, flux, and fate in Stordalen Mire, a permafrost peatland in transition
    (American Geophysical Union, 2022-01-03) Holmes Huettel, M. Elizabeth ; Crill, Patrick M. ; Burnett, William C. ; McCalley, Carmody K. ; Wilson, Rachel M. ; Frolking, Stephen ; Chang, Kuang-Yu ; Riley, William J. ; Varner, Ruth K. ; Hodgkins, Suzanne B. ; McNichol, Ann P. ; Saleska, Scott R. ; Rich, Virginia I. ; Chanton, Jeffrey P.
    Stordalen Mire is a peatland in the discontinuous permafrost zone in arctic Sweden that exhibits a habitat gradient from permafrost palsa, to Sphagnum bog underlain by permafrost, to Eriophorum-dominated fully thawed fen. We used three independent approaches to evaluate the annual, multi-decadal, and millennial apparent carbon accumulation rates (aCAR) across this gradient: seven years of direct semi-continuous measurement of CO2 and CH4 exchange, and 21 core profiles for 210Pb and 14C peat dating. Year-round chamber measurements indicated net carbon balance of −13 ± 8, −49 ± 15, and −91 ± 43 g C m−2 y−1 for the years 2012–2018 in palsa, bog, and fen, respectively. Methane emission offset 2%, 7%, and 17% of the CO2 uptake rate across this gradient. Recent aCAR indicates higher C accumulation rates in surface peats in the palsa and bog compared to current CO2 fluxes, but these assessments are more similar in the fen. aCAR increased from low millennial-scale levels (17–29 g C m−2 y−1) to moderate aCAR of the past century (72–81 g C m−2 y−1) to higher recent aCAR of 90–147 g C m−2 y−1. Recent permafrost collapse, greater inundation and vegetation response has made the landscape a stronger CO2 sink, but this CO2 sink is increasingly offset by rising CH4 emissions, dominated by modern carbon as determined by 14C. The higher CH4 emissions result in higher net CO2-equivalent emissions, indicating that radiative forcing of this mire and similar permafrost ecosystems will exert a warming influence on future climate.