Maresca
Thomas J.
Maresca
Thomas J.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleFunctional overlap of microtubule assembly factors in chromatin-promoted spindle assembly(American Society for Cell Biology, 2009-04-15) Groen, Aaron C. ; Maresca, Thomas J. ; Gatlin, Jesse C. ; Salmon, Edward D. ; Mitchison, Timothy J.Distinct pathways from centrosomes and chromatin are thought to contribute in parallel to microtubule nucleation and stabilization during animal cell mitotic spindle assembly, but their full mechanisms are not known. We investigated the function of three proposed nucleation/stabilization factors, TPX2, {gamma}-tubulin and XMAP215, in chromatin-promoted assembly of anastral spindles in Xenopus laevis egg extract. In addition to conventional depletion-add back experiments, we tested whether factors could substitute for each other, indicative of functional redundancy. All three factors were required for microtubule polymerization and bipolar spindle assembly around chromatin beads. Depletion of TPX2 was partially rescued by the addition of excess XMAP215 or EB1, or inhibiting MCAK (a Kinesin-13). Depletion of either {gamma}-tubulin or XMAP215 was partially rescued by adding back XMAP215, but not by adding any of the other factors. These data reveal functional redundancy between specific assembly factors in the chromatin pathway, suggesting individual proteins or pathways commonly viewed to be essential may not have entirely unique functions.
-
ArticleIntrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity(Rockefeller University Press, 2009-02-03) Maresca, Thomas J. ; Salmon, Edward D.Cells have evolved a signaling pathway called the spindle assembly checkpoint (SAC) to increase the fidelity of chromosome segregation by generating a "wait anaphase" signal until all chromosomes are properly aligned within the mitotic spindle. It has been proposed that tension generated by the stretch of the centromeric chromatin of bioriented chromosomes stabilizes kinetochore microtubule attachments and turns off SAC activity. Although biorientation clearly causes stretching of the centromeric chromatin, it is unclear whether the kinetochore is also stretched. To test whether intrakinetochore stretch occurs and is involved in SAC regulation, we developed a Drosophila melanogaster S2 cell line expressing centromere identifier–mCherry and Ndc80–green fluorescent protein to mark the inner and outer kinetochore domains, respectively. We observed stretching within kinetochores of bioriented chromosomes by monitoring both inter- and intrakinetochore distances in live cell assays. This intrakinetochore stretch is largely independent of a 30-fold variation in centromere stretch. Furthermore, loss of intrakinetochore stretch is associated with enhancement of 3F3/2 phosphorylation and SAC activation.
-
PreprintSpindle assembly in the absence of a RanGTP gradient requires localized CPC activity( 2009-05) Maresca, Thomas J. ; Groen, Aaron C. ; Gatlin, Jesse C. ; Ohi, Ryoma ; Mitchison, Timothy J. ; Salmon, Edward D.During animal cell division, a gradient of GTP-bound Ran is generated around mitotic chromatin. It is generally accepted that this RanGTP gradient is essential for organizing the spindle since it locally activates critical spindle assembly factors. Here, we show in Xenopus egg extract, where the gradient is best characterized, that spindles can assemble in the absence of a RanGTP gradient. Gradient-free spindle assembly occurred around sperm nuclei but not around chromatin-coated beads and required the chromosomal passenger complex (CPC). Artificial enrichment of CPC activity within hybrid bead arrays containing both immobilized chromatin and the CPC supported local microtubule assembly even in the absence of a RanGTP gradient. We conclude that RanGTP and the CPC constitute the two major molecular signals that spatially promote microtubule polymerization around chromatin. Furthermore, we hypothesize that the two signals mainly originate from discreet physical sites on the chromosomes to localize microtubule assembly around chromatin: a RanGTP signal from any chromatin, and a CPC-dependent signal predominantly generated from centromeric chromatin.