Tang Tswen Yung

No Thumbnail Available
Last Name
Tang
First Name
Tswen Yung
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Internal solitons in the northeastern south China Sea. Part I: sources and deep water propagation
    (IEEE, 2004-10) Ramp, Steven R. ; Tang, Tswen Yung ; Duda, Timothy F. ; Lynch, James F. ; Liu, Antony K. ; Chiu, Ching-Sang ; Bahr, Frederick L. ; Kim, Hyoung-Rok ; Yang, Yiing-Jang
    A moored array of current, temperature, conductivity, and pressure sensors was deployed across the Chinese continental shelf and slope in support of the Asian Seas International Acoustics Experiment. The goal of the observations was to quantify the water column variability in order to understand the along- and across-shore low-frequency acoustic propagation in shallow water. The moorings were deployed from April 21–May 19, 2001 and sampled at 1–5 min intervals to capture the full range of temporal variability without aliasing the internal wave field. The dominant oceanographic signal by far was in fact the highly nonlinear internal waves (or solitons) which were generated near the Batan Islands in the Luzon Strait and propagated 485 km across deep water to the observation region. Dubbed trans-basin waves, to distinguish them from other, smaller nonlinear waves generated locally near the shelf break, these waves had amplitudes ranging from 29 to greater than 140 m and were among the largest such waves ever observed in the world’s oceans. The waves arrived at the most offshore mooring in two clusters lasting 7–8 days each separated by five days when no waves were observed.Within each cluster, two types of waves arrived which have been named type-a and type-b. The type-a waves had greater amplitude than the type-b waves and arrived with remarkable regularity at the same time each day, 24 h apart. The type-b waves were weaker than the type-a waves, arrived an hour later each day, and generally consisted of a single soliton growing out of the center of the wave packet. Comparison with modeled barotropic tides from the generation region revealed that: 1) The two clusters were generated around the time of the spring tides in the Luzon strait; and 2) The type-a waves were generated on the strong side of the diurnal inequality while the type-b waves were generated on the weaker beat. The position of the Kuroshio intrusion into the Luzon Strait may modulate the strength of the waves being produced. As the waves shoaled, the huge lead solitons first split into two solitons then merged together into a broad region of thermocline depression at depths less than 120 m. Elevation waves sprang up behind them as they continued to propagate onshore. The elevation waves also grew out of regions where the locally-generated internal tide forced the main thermocline down near the bottom. The “critical point” where the upper and lower layers were equal was a good indicator of when the depression or elevation waves would form, however this was not a static point, but rather varied in both space and time according to the presence or absence of the internal tides and the incoming trans-basin waves themselves.
  • Article
    Research highlights from the Asian Seas International Acoustics Experiment in the South China Sea
    (IEEE, 2004-10) Lynch, James F. ; Ramp, Steven R. ; Chiu, Ching-Sang ; Tang, Tswen Yung ; Yang, Yiing-Jang ; Simmen, Jeffrey A.
    The Asian Seas International Acoustics Experiment (ASIAEX) included two major field programs, one in the South China Sea (SCS) and the other in the East China Sea (ECS). This paper summarizes results from the work conducted during April and May 2000 and 2001 over the continental shelf and slope in the northeastern South China Sea, just east of Dongsha Island (Pratis Reef). The primary emphasis of the field program was on water-column variability and its impact on acoustic propagation loss. The reader is steered to the appropriate paper within this Special Issue when more information on a specific topic is desired.