Yellepeddi Atulya

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 2 of 2
  • Thesis
    Direct-form adaptive equalization for underwater acoustic communication
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2012-06) Yellepeddi, Atulya
    Adaptive equalization is an important aspect of communication systems in various environments. It is particularly important in underwater acoustic communication systems, as the channel has a long delay spread and is subject to the effects of time- varying multipath fading and Doppler spreading. The design of the adaptation algorithm has a profound influence on the performance of the system. In this thesis, we explore this aspect of the system. The emphasis of the work presented is on applying concepts from inference and decision theory and information theory to provide an approach to deriving and analyzing adaptation algorithms. Limited work has been done so far on rigorously devising adaptation algorithms to suit a particular situation, and the aim of this thesis is to concretize such efforts and possibly to provide a mathematical basis for expanding it to other applications. We derive an algorithm for the adaptation of the coefficients of an equalizer when the receiver has limited or no information about the transmitted symbols, which we term the Soft-Decision Directed Recursive Least Squares algorithm. We will demonstrate connections between the Expectation-Maximization (EM) algorithm and the Recursive Least Squares algorithm, and show how to derive a computationally efficient, purely recursive algorithm from the optimal EM algorithm. Then, we use our understanding of Markov processes to analyze the performance of the RLS algorithm in hard-decision directed mode, as well as of the Soft-Decision Directed RLS algorithm. We demonstrate scenarios in which the adaptation procedures fail catastrophically, and discuss why this happens. The lessons from the analysis guide us on the choice of models for the adaptation procedure. We then demonstrate how to use the algorithm derived in a practical system for underwater communication using turbo equalization. As the algorithm naturally incorporates soft information into the adaptation process, it becomes easy to fit it into a turbo equalization framework. We thus provide an instance of how to use the information of a turbo equalizer in an adaptation procedure, which has not been very well explored in the past. Experimental data is used to prove the value of the algorithm in a practical context.
  • Thesis
    Graphical model driven methods in adaptive system identification
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2016-09) Yellepeddi, Atulya
    Identifying and tracking an unknown linear system from observations of its inputs and outputs is a problem at the heart of many different applications. Due to the complexity and rapid variability of modern systems, there is extensive interest in solving the problem with as little data and computation as possible. This thesis introduces the novel approach of reducing problem dimension by exploiting statistical structure on the input. By modeling the input to the system of interest as a graph-structured random process, it is shown that a large parameter identification problem can be reduced into several smaller pieces, making the overall problem considerably simpler. Algorithms that can leverage this property in order to either improve the performance or reduce the computational complexity of the estimation problem are developed. The first of these, termed the graphical expectation-maximization least squares (GEM-LS) algorithm, can utilize the reduced dimensional problems induced by the structure to improve the accuracy of the system identification problem in the low sample regime over conventional methods for linear learning with limited data, including regularized least squares methods. Next, a relaxation of the GEM-LS algorithm termed the relaxed approximate graph structured least squares (RAGS-LS) algorithm is obtained that exploits structure to perform highly efficient estimation. The RAGS-LS algorithm is then recast into a recursive framework termed the relaxed approximate graph structured recursive least squares (RAGSRLS) algorithm, which can be used to track time-varying linear systems with low complexity while achieving tracking performance comparable to much more computationally intensive methods. The performance of the algorithms developed in the thesis in applications such as channel identification, echo cancellation and adaptive equalization demonstrate that the gains admitted by the graph framework are realizable in practice. The methods have wide applicability, and in particular show promise as the estimation and adaptation algorithms for a new breed of fast, accurate underwater acoustic modems. The contributions of the thesis illustrate the power of graphical model structure in simplifying difficult learning problems, even when the target system is not directly structured.