Håvik Lisbeth

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 4 of 4
  • Preprint
    Upstream sources of the Denmark Strait Overflow : observations from a high-resolution mooring array
    ( 2016-02-19) Harden, Benjamin E. ; Pickart, Robert S. ; Valdimarsson, Héðinn ; Våge, Kjetil ; de Steur, Laura ; Richards, Clark G. ; Bahr, Frank B. ; Torres, Daniel J. ; Børve, Eli ; Jonsson, Steingrimur ; Macrander, Andreas ; Østerhus, Svein ; Håvik, Lisbeth ; Hattermann, Tore
    We present the first results from a densely instrumented mooring array upstream of the Denmark Strait sill, extending from the Iceland shelfbreak to the Greenland shelf. The array was deployed from September 2011 to July 2012, and captured the vast majority of overflow water denser than 27.8 kgm-3 approaching the sill. The mean transport of overflow water over the length of the deployment was 3.54 ± 0.16 Sv. Of this, 0.58 Sv originated from below sill depth, revealing that aspiration takes place in Denmark Strait. We confirm the presence of two main sources of overflow water: one approaching the sill in the East Greenland Current and the other via the North Icelandic Jet. Using an objective technique based on the hydrographic properties of the water, the transports of these two sources are found to be 2.54 ± 0.17 Sv and 1.00 ± 0.17 Sv, respectively. We further partition the East Greenland Current source into that carried by the shelfbreak jet (1.50 ± 0.16 Sv) versus that transported by a separated branch of the current on the Iceland slope (1.04 ± 0.15 Sv). Over the course of the year the total overflow transport is more consistent than the transport in either branch; compensation takes place among the pathways that maintains a stable total overflow transport. This is especially true for the two East Greenland Current branches whose transports vary out of phase with each other on weekly and longer time scales. We argue that wind forcing plays a role in this partitioning.
  • Article
    Ocean convection linked to the recent ice edge retreat along east Greenland
    (Nature Publishing Group, 2018-03-29) Våge, Kjetil ; Papritz, Lukas ; Håvik, Lisbeth ; Spall, Michael A. ; Moore, G. W. K.
    Warm subtropical-origin Atlantic water flows northward across the Greenland-Scotland Ridge into the Nordic Seas, where it relinquishes heat to the atmosphere and gradually transforms into dense Atlantic-origin water. Returning southward along east Greenland, this water mass is situated beneath a layer of cold, fresh surface water and sea ice. Here we show, using measurements from autonomous ocean gliders, that the Atlantic-origin water was re-ventilated while transiting the western Iceland Sea during winter. This re-ventilation is a recent phenomenon made possible by the retreat of the ice edge toward Greenland. The fresh surface layer that characterises this region in summer is diverted onto the Greenland shelf by enhanced onshore Ekman transport induced by stronger northerly winds in fall and winter. Severe heat loss from the ocean offshore of the ice edge subsequently triggers convection, which further transforms the Atlantic-origin water. This re-ventilation is a counterintuitive occurrence in a warming climate, and highlights the difficulties inherent in predicting the behaviour of the complex coupled climate system.
  • Article
    Structure and variability of the shelfbreak East Greenland Current north of Denmark Strait
    (American Meteorological Society, 2017-10-31) Håvik, Lisbeth ; Våge, Kjetil ; Pickart, Robert S. ; Harden, Benjamin E. ; von Appen, Wilken-Jon ; Jónsson, Steingrímur ; Østerhus, Svein
    Data from a mooring array deployed north of Denmark Strait from September 2011 to August 2012 are used to investigate the structure and variability of the shelfbreak East Greenland Current (EGC). The shelfbreak EGC is a surface-intensified current situated just offshore of the east Greenland shelf break flowing southward through Denmark Strait. This study identified two dominant spatial modes of variability within the current: a pulsing mode and a meandering mode, both of which were most pronounced in fall and winter. A particularly energetic event in November 2011 was related to a reversal of the current for nearly a month. In addition to the seasonal signal, the current was associated with periods of enhanced eddy kinetic energy and increased variability on shorter time scales. The data indicate that the current is, for the most part, barotropically stable but subject to baroclinic instability from September to March. By contrast, in summer the current is mainly confined to the shelf break with decreased eddy kinetic energy and minimal baroclinic conversion. No other region of the Nordic Seas displays higher levels of eddy kinetic energy than the shelfbreak EGC north of Denmark Strait during fall. This appears to be due to the large velocity variability on mesoscale time scales generated by the instabilities. The mesoscale variability documented here may be a source of the variability observed at the Denmark Strait sill.
  • Article
    Evolution of the East Greenland Current from Fram Strait to Denmark Strait : synoptic measurements from summer 2012
    (John Wiley & Sons, 2017-03-13) Håvik, Lisbeth ; Pickart, Robert S. ; Våge, Kjetil ; Torres, Daniel J. ; Thurnherr, Andreas M. ; Beszczynska-Möller, Agnieszka ; Walczowski, Waldemar ; von Appen, Wilken-Jon
    We present measurements from two shipboard surveys conducted in summer 2012 that sampled the rim current system around the Nordic Seas from Fram Strait to Denmark Strait. The data reveal that, along a portion of the western boundary of the Nordic Seas, the East Greenland Current (EGC) has three distinct components. In addition to the well-known shelfbreak branch, there is an inshore branch on the continental shelf as well as a separate branch offshore of the shelfbreak. The inner branch contributes significantly to the overall freshwater transport of the rim current system, and the outer branch transports a substantial amount of Atlantic-origin Water equatorward. Supplementing our measurements with historical hydrographic data, we argue that the offshore branch is a direct recirculation of the western branch of the West Spitsbergen Current in Fram Strait. The total transport of the shelfbreak EGC (the only branch sampled consistently in all of the sections) decreased toward Denmark Strait. The estimated average transport of dense overflow water (rh > 27.8 kg/m3 and h>08C) in the shelfbreak EGC was 2.860.7 Sv, consistent with previous moored measurements. For the three sections that crossed the entire EGC system the freshwater flux, relative to a salinity of 34.8, ranged from 127613 to 8168 mSv. The hydrographic data reveal that, between Fram Strait and Denmark Strait, the core of the Atlantic-origin Water in the shelfbreak EGC cools and freshens but changes very little in density.