March James G.

No Thumbnail Available
Last Name
March
First Name
James G.
ORCID

Search Results

Now showing 1 - 1 of 1
  • Article
    Testing isosource : stable isotope analysis of a tropical fishery with diverse organic matter sources
    (Ecological Society of America, 2006-02) Benstead, Jonathan P. ; March, James G. ; Fry, Brian ; Ewel, Katherine C. ; Pringle, Catherine M.
    We sampled consumers and organic matter sources (mangrove litter, freshwater swamp-forest litter, seagrasses, seagrass epiphytes, and marine particulate organic matter [MPOM]) from four estuaries on Kosrae, Federated States of Micronesia for stable isotope (δ13C and δ34S) analysis. Unique mixing solutions cannot be calculated in a dual-isotope, five-endmember scenario, so we tested IsoSource, a recently developed statistical procedure that calculates ranges in source contributions (i.e., minimum and maximum possible). Relatively high minimum contributions indicate significant sources, while low maxima indicate otherwise. Litter from the two forest types was isotopically distinguishable but had low average minimum contributions (0–8% for mangrove litter and 0% for swamp-forest litter among estuaries). Minimum contribution of MPOM was also low, averaging 0–13% among estuaries. Instead, local marine sources dominated contributions to consumers. Minimum contributions of seagrasses averaged 8–47% among estuaries (range 0–88% among species). Minimum contributions of seagrass epiphytes averaged 5–27% among estuaries (range 0–69% among species). IsoSource enabled inclusion of five organic matter sources in our dual-isotope analysis, ranking trophic importance as follows: seagrasses > seagrass epiphytes > MPOM > mangrove forest > freshwater swamp-forest. IsoSource is thus a useful step toward understanding which of multiple organic matter sources support food webs; more detailed work is necessary to identify unique solutions.