(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2011-09)
Blair, Ballard J. S.
Underwater wireless communication is quickly becoming a necessity for applications
in ocean science, defense, and homeland security. Acoustics remains the only practical
means of accomplishing long-range communication in the ocean. The acoustic
communication channel is fraught with difficulties including limited available bandwidth,
long delay-spread, time-variability, and Doppler spreading. These difficulties
reduce the reliability of the communication system and make high data-rate communication
challenging. Adaptive decision feedback equalization is a common method to
compensate for distortions introduced by the underwater acoustic channel. Limited
work has been done thus far to introduce the physics of the underwater channel into
improving and better understanding the operation of a decision feedback equalizer.
This thesis examines how to use physical models to improve the reliability and reduce
the computational complexity of the decision feedback equalizer. The specific topics
covered by this work are: how to handle channel estimation errors for the time varying
channel, how to use angular constraints imposed by the environment into an array
receiver, what happens when there is a mismatch between the true channel order and
the estimated channel order, and why there is a performance difference between the
direct adaptation and channel estimation based methods for computing the equalizer
coefficients. For each of these topics, algorithms are provided that help create a more
robust equalizer with lower computational complexity for the underwater channel.