Yin Kedong

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Temporal and spatial variations in nutrient stoichiometry and regulation of phytoplankton biomass in Hong Kong waters : influence of the Pearl River outflow and sewage inputs
    ( 2008-01) Xu, Jie ; Ho, Alvin Y. T. ; Yin, Kedong ; Yuan, Xiangcheng ; Anderson, Donald M. ; Lee, Joseph H. W. ; Harrison, Paul J.
    In 2001, the Hong Kong government implemented the Harbor Area Treatment Scheme (HATS) under which 70% of the sewage that had been formerly discharged into Victoria Harbor is now collected and sent to Stonecutters Island Sewage Works where it receives chemically enhanced primary treatment (CEPT), and is then discharged into waters west of the Harbor. The relocation of the sewage discharge will possibly change the nutrient dynamics and phytoplankton biomass in this area. Therefore, there is a need to examine the factors that regulate phytoplankton growth in Hong Kong waters in order to understand future impacts. Based on a historic nutrient data set (1986-2001), a comparison of ambient nutrient ratios with the Redfield ratio (N:P:Si=16:1:16) showed clear spatial variations in the factors that regulate phytoplankton biomass along a west (estuary) to east (coastal/oceanic) transect through Hong Kong waters. Algal biomass was constrained by a combination of low light conditions, a rapid change in salinity, and strong turbulent mixing in western waters throughout the year. Potential stoichiometric Si limitation (up to 94% of the cases in winter) occurred in Victoria Harbor due to the contribution of sewage effluent with high N and P enrichment all year, except for summer when the frequency of stoichiometric Si limitation (48%) was the same as P, owing to the influence of the high Si in the Pearl River discharge. In the eastern waters, potential N limitation and N and P co-limitation occurred in autumn and winter respectively, because of the dominance of coastal/oceanic water with low nutrients and low N:P ratios. In contrast, potential Si limitation occurred in spring and a switch to potential N, P and Si limitation occurred in eastern waters in summer. In southern waters, there was a shift from P limitation (80%) in summer due to the influence of the N-rich Pearl River discharge, to N limitation (68%) in autumn, and to N and P co-limitation in winter due to the dominance of N-poor oceanic water from the oligotrophic South China Sea. Our results show clear temporal and spatial variations in the nutrient stoichiometry which indicates potential regulation of phytoplankton biomass in HK waters due to the combination of the seasonal exchange of the Pearl River discharge and oceanic water, sewage effluent inputs, and strong hydrodynamic mixing from SW monsoon winds in summer and the NE monsoon winds in winter.
  • Preprint
    Ocean urea fertilization for carbon credits poses high ecological risks
    ( 2008) Glibert, Patricia M. ; Azanza, Rhodora ; Burford, Michele ; Furuya, Ken ; Abal, Eva ; Al-Azri, Adnan ; Al-Yamani, Faiza ; Andersen, Per ; Anderson, Donald M. ; Beardall, John ; Berg, Gry M. ; Brand, Larry E. ; Bronk, Deborah ; Brookes, Justin ; Burkholder, JoAnn M. ; Cembella, Allan D. ; Cochlan, William P. ; Collier, Jackie L. ; Collos, Yves ; Diaz, Robert ; Doblin, Martina ; Drennen, Thomas ; Dyhrman, Sonya T. ; Fukuyo, Yasuwo ; Furnas, Miles ; Galloway, James ; Graneli, Edna ; Ha, Dao Viet ; Hallegraeff, Gustaaf M. ; Harrison, John A. ; Harrison, Paul J. ; Heil, Cynthia A. ; Heimann, Kirsten ; Howarth, Robert W. ; Jauzein, Cecile ; Kana, Austin A. ; Kana, Todd M. ; Kim, Hakgyoon ; Kudela, Raphael M. ; Legrand, Catherine ; Mallin, Michael ; Mulholland, Margaret R. ; Murray, Shauna A. ; O’Neil, Judith ; Pitcher, Grant C. ; Qi, Yuzao ; Rabalais, Nancy ; Raine, Robin ; Seitzinger, Sybil P. ; Salomon, Paulo S. ; Solomon, Caroline ; Stoecker, Diane K. ; Usup, Gires ; Wilson, Joanne ; Yin, Kedong ; Zhou, Mingjiang ; Zhu, Mingyuan
    The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed.