Marzen Rachel E.

No Thumbnail Available
Last Name
Marzen
First Name
Rachel E.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Constraints on Appalachian orogenesis and continental rifting in the Southeastern United States from wide-angle seismic data
    (American Geophysical Union, 2019-06-24) Marzen, Rachel E. ; Shillington, Donna J. ; Lizarralde, Daniel ; Harder, Steven H.
    The Southeastern United States is an ideal location to understand the interactions between mountain building, rifting, and magmatism. Line 2 of the Suwannee suture and Georgia Rift basin refraction seismic experiment in eastern Georgia extends 420 km from the Inner Piedmont to the Georgia coast. We model crustal and upper mantle VP and upper crustal VS. The most dramatic model transition occurs at the Higgins‐Zietz magnetic boundary, north of which we observe higher upper crustal VP and VS and lower VP/VS. These observations support the interpretation of the Higgins‐Zietz boundary as the Alleghanian suture. North of this boundary, we observe a low‐velocity zone less than 2 km thick at ~5‐km depth, consistent with a layer of sheared metasedimentary rocks that forms the Appalachian detachment. To the southeast, we interpret synrift sediments and decreasing crustal thickness to represent crustal thinning associated with the South Georgia Rift Basin and subsequent continental breakup. The correspondence of the northern limit of thinning with the interpreted suture location suggests that the orogenic suture zone and/or the Gondwanan crust to the south of the suture helped localize subsequent extension. Lower crustal VP and VP/VS preclude volumetrically significant mafic magmatic addition during rifting or associated with the Central Atlantic Magmatic Province. Structures formed during orogenesis and/or extension appear to influence seismicity in Georgia today; earthquakes localize along a steeply dipping zone that coincides with the northern edge of the South Georgia Basin and the change in upper crustal velocities at the Higgins‐Zietz boundary.
  • Article
    Limited and localized magmatism in the Central Atlantic Magmatic Province
    (Nature Research, 2020-07-07) Marzen, Rachel E. ; Shillington, Donna J. ; Lizarralde, Daniel ; Knapp, James H. ; Heffner, David M. ; Davis, Joshua K. ; Harder, Steven H.
    The Central Atlantic Magmatic Province (CAMP) is the most aerially extensive magmatic event in Earth’s history, but many questions remain about its origin, volume, and distribution. Despite many observations of CAMP magmatism near Earth’s surface, few constraints exist on CAMP intrusions at depth. Here we present detailed constraints on crustal and upper mantle structure from wide-angle seismic data across the Triassic South Georgia Rift that formed shortly before CAMP. Lower crustal magmatism is concentrated where synrift sedimentary fill is thickest and the crust is thinnest, suggesting that lithospheric thinning influenced the locus and volume of magmatism. The limited distribution of lower crustal intrusions implies modest total CAMP volumes of 85,000 to 169,000 km3 beneath the South Georgia Rift, consistent with moderately elevated mantle potential temperatures (<1500 °C). These results suggest that CAMP magmatism in the South Georgia Rift is caused by syn-rift decompression melting of a warm, enriched mantle.