Caselle Jennifer E.

No Thumbnail Available
Last Name
Caselle
First Name
Jennifer E.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Does fish larval dispersal differ between high and low latitudes?
    ( 2013-02) Leis, Jeffrey M. ; Caselle, Jennifer E. ; Bradbury, Ian R. ; Kristiansen, Trond ; Llopiz, Joel K. ; Miller, Michael J. ; O'Connor, Mary I. ; Paris, Claire B. ; Shanks, Alan L. ; Sogard, Susan M. ; Swearer, Stephen E. ; Treml, Eric A. ; Vetter, Russell D. ; Warner, Robert R.
    Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions, and evidence. We explore latitudinal differences in: 1) biological (e.g., species composition, spawning mode, pelagic larval duration (PLD)), 2) physical (e.g., water movement, habitat fragmentation), and 3) biophysical factors (primarily temperature, which could strongly affect development, swimming ability, or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature, and larval swimming, and each could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat, and geographic region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of ‘off the shelf’ information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes, as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.
  • Article
    A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps
    (Frontiers Media, 2021-10-20) Cavanaugh, Kyle C. ; Bell, Tom W. ; Costa, Maycira ; Eddy, Norah E. ; Gendall, Lianna ; Gleason, Mary G. ; Hessing-Lewis, Margot ; Martone, Rebecca ; McPherson, Meredith L. ; Pontier, Ondine ; Reshitnyk, Luba ; Beas-Luna, Rodrigo ; Carr, Mark H. ; Caselle, Jennifer E. ; Cavanaugh, Katherine C. ; Flores Miller, Rebecca ; Hamilton, Sara L. ; Heady, Walter N. ; Hirsh, Heidi K. ; Hohman, Rietta ; Lee, Lynn Chi ; Lorda, Julio ; Ray, James ; Reed, Daniel C. ; Saccomanno, Vienna R. ; Schroeder, Sarah B.
    Surface-canopy forming kelps provide the foundation for ecosystems that are ecologically, culturally, and economically important. However, these kelp forests are naturally dynamic systems that are also threatened by a range of global and local pressures. As a result, there is a need for tools that enable managers to reliably track changes in their distribution, abundance, and health in a timely manner. Remote sensing data availability has increased dramatically in recent years and this data represents a valuable tool for monitoring surface-canopy forming kelps. However, the choice of remote sensing data and analytic approach must be properly matched to management objectives and tailored to the physical and biological characteristics of the region of interest. This review identifies remote sensing datasets and analyses best suited to address different management needs and environmental settings using case studies from the west coast of North America. We highlight the importance of integrating different datasets and approaches to facilitate comparisons across regions and promote coordination of management strategies.