Graves Sara J.

No Thumbnail Available
Last Name
First Name
Sara J.

Search Results

Now showing 1 - 2 of 2
  • Article
    Introduction to special section on The U.S. IOOS Coastal and Ocean Modeling Testbed
    (John Wiley & Sons, 2013-12-11) Luettich, Richard A. ; Wright, L. Donelson ; Signell, Richard P. ; Friedrichs, Carl T. ; Friedrichs, Marjorie A. M. ; Harding, John ; Fennel, Katja ; Howlett, Eoin ; Graves, Sara J. ; Smith, Elizabeth ; Crane, Gary ; Baltes, Rebecca
    Strong and strategic collaborations among experts from academia, federal operational centers, and industry have been forged to create a U.S. IOOS Coastal and Ocean Modeling Testbed (COMT). The COMT mission is to accelerate the transition of scientific and technical advances from the coastal and ocean modeling research community to improved operational ocean products and services. This is achieved via the evaluation of existing technology or the development of new technology depending on the status of technology within the research community. The initial phase of the COMT has addressed three coastal and ocean prediction challenges of great societal importance: estuarine hypoxia, shelf hypoxia, and coastal inundation. A fourth effort concentrated on providing and refining the cyberinfrastructure and cyber tools to support the modeling work and to advance interoperability and community access to the COMT archive. This paper presents an overview of the initiation of the COMT, the findings of each team and a discussion of the role of the COMT in research to operations and its interface with the coastal and ocean modeling community in general. Detailed technical results are presented in the accompanying series of 16 technical papers in this special issue.
  • Article
    Mapping the biosphere : exploring species to understand the origin, organization and sustainability of biodiversity
    (Taylor & Francis, 2012-03-27) Wheeler, Q. D. ; Knapp, Sandra ; Stevenson, D. W. ; Stevenson, J. ; Blum, Stan D. ; Boom, B.. M. ; Borisy, Gary G. ; Buizer, James L. ; De Carvalho, M. R. ; Cibrian, A. ; Donoghue, M. J. ; Doyle, V. ; Gerson, E. M. ; Graham, C. H. ; Graves, P. ; Graves, Sara J. ; Guralnick, Robert P. ; Hamilton, A. L. ; Hanken, J. ; Law, W. ; Lipscomb, D. L. ; Lovejoy, Thomas E. ; Miller, Holly ; Miller, J. S. ; Naeem, Shahid ; Novacek, M. J. ; Page, L. M. ; Platnick, N. I. ; Porter-Morgan, H. ; Raven, Peter H. ; Solis, M. A. ; Valdecasas, A. G. ; Van Der Leeuw, S. ; Vasco, A. ; Vermeulen, N. ; Vogel, J. ; Walls, R. L. ; Wilson, E. O. ; Woolley, J. B.
    The time is ripe for a comprehensive mission to explore and document Earth's species. This calls for a campaign to educate and inspire the next generation of professional and citizen species explorers, investments in cyber-infrastructure and collections to meet the unique needs of the producers and consumers of taxonomic information, and the formation and coordination of a multi-institutional, international, transdisciplinary community of researchers, scholars and engineers with the shared objective of creating a comprehensive inventory of species and detailed map of the biosphere. We conclude that an ambitious goal to describe 10 million species in less than 50 years is attainable based on the strength of 250 years of progress, worldwide collections, existing experts, technological innovation and collaborative teamwork. Existing digitization projects are overcoming obstacles of the past, facilitating collaboration and mobilizing literature, data, images and specimens through cyber technologies. Charting the biosphere is enormously complex, yet necessary expertise can be found through partnerships with engineers, information scientists, sociologists, ecologists, climate scientists, conservation biologists, industrial project managers and taxon specialists, from agrostologists to zoophytologists. Benefits to society of the proposed mission would be profound, immediate and enduring, from detection of early responses of flora and fauna to climate change to opening access to evolutionary designs for solutions to countless practical problems. The impacts on the biodiversity, environmental and evolutionary sciences would be transformative, from ecosystem models calibrated in detail to comprehensive understanding of the origin and evolution of life over its 3.8 billion year history. The resultant cyber-enabled taxonomy, or cybertaxonomy, would open access to biodiversity data to developing nations, assure access to reliable data about species, and change how scientists and citizens alike access, use and think about biological diversity information.