Pettigrew
Tom
Pettigrew
Tom
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
Working PaperSeisCORK meeting report(Woods Hole Oceanographic Institution, 2006-02) Stephen, Ralph A. ; Pettigrew, Tom ; Becker, Keir ; Spiess, Fred N.The purpose of this meeting was to explore design options to simultaneously acquire borehole seismic data and hydro-geological data (pressure, temperature, fluid sampling and microbiological sampling) on a single CORK system. The scientific focus was to add a seismic component to the Juan de Fuca Hydrogeology program. By permanently installing a sensor string in the borehole our goal was to enable: l) time-lapse VSP's and offset VSP's with sufficient data quality to study amplitude versus offset, shear wave anisotropy, and lateral heterogeneity; 2) monitoring of micro- and nano- earthquake activity around the site for correlation with pressure transients. Because of the difficulty in ensuring adequate coupling through multiple casing strings we concluded that it was impractical to install the vertical seismic array with 10m spacing (50-60 nodes) that would be necessary for VSP's and time-lapse VSP's. We did describe a scenario for a vertical seismic array with approximately 100m spacing (5-6 nodes) that could be used for offset-VSP's and seismic monitoring. This uses some unique technology and involves two seismic strings: one in the annulus between the 4- 1/2" and 10-3/4" casings and one in the middle of the 4-1/2" casing.
-
Technical ReportSeisCORK engineering design study(Woods Hole Oceanographic Institution, 2006-05) Stephen, Ralph A. ; Pettigrew, Tom ; Petitt, Robert A.The goal of SeisCORKs is to make simultaneous and co-located seismic, pressure, temperature, pore water chemistry and pore water biology measurements in the seafloor. We want to see the small events in the vicinity of the borehole for three reasons: 1) After an event fluid may flow in the formation in response to the changing stress regime. Down to what magnitude of event do the pressure transients in the well respond? 2) Fluid flow causes small earthquakes. One mechanism for example is by changing the temperature of the rocks which expand and contract, altering the stress regime. We want to look for this fluid flow. 3) Laboratory studies of rock deformation show that shear fracture is preceded by the coalescence of interacting tensile microcracks which are observed as “acoustic emissions”. By placing high frequency geophones next to faults it may be possible to observe these “acoustic” precursors to rock failure. Since in reservoirs on land small events appear in the frequency band 400-800Hz, no one has yet tried to observe them in oceanic crust. SeisCORKs also obviate the considerable logistical, administrative, and clearance difficulties associated with scheduling a shooting ship to run offset VSPs. We resolved to start with a “tubing conveyed” SeisCORK configuration consisting of four three-component sondes at 50m separation lowered on the outside of 4.5in casing (or drill pipe) inside 10-3/4in casing.