Winey Nastasia E.

No Thumbnail Available
Last Name
First Name
Nastasia E.

Search Results

Now showing 1 - 1 of 1
  • Thesis
    Modifiable Stability and Maneuverability of High Speed Unmanned Underwater Vehicles (UUVs) Through Bioinspired Control Fins
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2020-09) Winey, Nastasia E.
    Underwater Vehicles generally have control fins located only near their aft end, for making controllable changes in directions. This design allows for stability of control; but, the turns are typically large in comparison to the vehicle’s body length. Some bony fish, such as tuna, however, have deployable fins located towards the front of their body, in addition to their other fins. Their deployable fins allow them to modulate their hydrodynamic behavior in response to their environment. Tunas keep these fins retracted during steady cruising, and then deploy them during rapid maneuvers. However, the details of these hydrodynamic effects are not well understood. To investigate this phenomena, using a REMUS 100 as a model, a pair of vertical fins was added at different hull positions, to investigate the effects of fin location on the horizontal plane hydrodynamics, through: stability parameters, nonlinear simulation, and towing tank experiments. Depending on the added fin location, the vehicle stability changed, thereby affecting the maneuverability. As fins were placed forward on the vehicle, maneuverability increased, with effects tapering off at 0.2 BL ahead of the vehicle's center of buoyancy. This investigation explored how rigid underwater vehicles could benefit from added fins, without drastically changing the design of current vehicles.