Babcock-Adams Lydia

No Thumbnail Available
Last Name
Babcock-Adams
First Name
Lydia
ORCID
0000-0001-6545-4917

Search Results

Now showing 1 - 2 of 2
  • Thesis
    Molecular characterization of organically bound copper in the marine environment
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2022-05) Babcock-Adams, Lydia ; Repeta, Daniel J.
    Marine microbes require copper (Cu) for a variety of key enzymes and can therefore experience limitation when concentrations are low. However, when Cu concentrations are too high, it becomes toxic causing decreased cell growth and even cell death. Laboratory culture experiments have shown that a diverse array of microbes produce organic ligands that complex Cu (CuL) and buffer the free ion concentration, which is the most bioavailable fraction. In this way, the microbes impose a control on the speciation of Cu, decreasing the toxic effects of Cu and making seawater conditions favorable for growth. Studies have shown that CuL complexes produced in laboratory cultures have similar complexation strengths to those found in seawater samples, which suggests a biological source of CuLs in seawater where dissolved Cu is almost entirely bound by organic ligands. However, information about individual CuL complexes is lacking which limits our understanding of the sources, sinks, and cycling of dissolved Cu. In order to fill this gap in knowledge, molecular level information about CuL complexes produced in culture and found in seawater must be obtained. To investigate this, liquid chromatography (LC) was coupled to two mass spectrometers (MS), an inductively coupled plasma (ICP) MS and an electrospray ionization (ESI) MS. By using data supplied by both techniques, the molecular charateristics of CuLs were determined laboratory cultures of the marine diatom Phaeodactylum tricornutum and the cyanobacterium Synechococcus, as well as investigating the distribution of CuLs in natural seawater samples along a line from 56°N to 20°S, along 152°W through the north and central Pacific Ocean. The CuLs identified in laboratory cultures had molecular formulae and fragmentation patterns characteristic of linear tetrapyrroles, a group of organic compounds commonly found in biological systems. This identification was further supported by absorbance and nuclear magnetic resonance spectroscopy. The distribution of CuLs in the Pacific Ocean showed a highly dynamic and complex mixture of ligands, closely tied to biological cycles.
  • Article
    Element-selective targeting of nutrient metabolites in environmental samples by inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry
    (Frontiers Media, 2021-03-13) Li, Jingxuan ; Boiteau, Rene M. ; Babcock-Adams, Lydia ; Song, Zhongchang ; McIlvin, Matthew R. ; Repeta, Daniel J.
    Metabolites that incorporate elements other than carbon, nitrogen, hydrogen and oxygen can be selectively detected by inductively coupled mass spectrometry (ICPMS). When used in parallel with chromatographic separations and conventional electrospray ionization mass spectrometry (ESIMS), ICPMS allows the analyst to quickly find, characterize and identify target metabolites that carry nutrient elements (P, S, trace metals; “nutrient metabolites”), which are of particular interest to investigations of microbial biogeochemical cycles. This approach has been applied to the study of siderophores and other trace metal organic ligands in the ocean. The original method used mass search algorithms that relied on the ratio of stable isotopologues of iron, copper and nickel to assign mass spectra collected by ESIMS to metabolites carrying these elements detected by ICPMS. However, while isotopologue-based mass assignment algorithms were highly successful in characterizing metabolites that incorporate some trace metals, they do not realize the whole potential of the ICPMS/ESIMS approach as they cannot be used to assign the molecular ions of metabolites with monoisotopic elements or elements for which the ratio of stable isotopes is not known. Here we report a revised ICPMS/ESIMS method that incorporates a number of changes to the configuration of instrument hardware that improves sensitivity of the method by a factor of 4–5, and allows for more accurate quantitation of metabolites. We also describe a new suite of mass search algorithms that can find and characterize metabolites that carry monoisotopic elements. We used the new method to identify siderophores in a laboratory culture of Vibrio cyclitrophicus and a seawater sample collected in the North Pacific Ocean, and to assign molecular ions to monoisotopic cobalt and iodine nutrient metabolites in extracts of a laboratory culture of the marine cyanobacterium Prochorococcus MIT9215.