Babcock-Adams Lydia

No Thumbnail Available
Last Name
Babcock-Adams
First Name
Lydia
ORCID
0000-0001-6545-4917

Search Results

Now showing 1 - 2 of 2
  • Article
    Element-selective targeting of nutrient metabolites in environmental samples by inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry
    (Frontiers Media, 2021-03-13) Li, Jingxuan ; Boiteau, Rene M. ; Babcock-Adams, Lydia ; Song, Zhongchang ; McIlvin, Matthew R. ; Repeta, Daniel J.
    Metabolites that incorporate elements other than carbon, nitrogen, hydrogen and oxygen can be selectively detected by inductively coupled mass spectrometry (ICPMS). When used in parallel with chromatographic separations and conventional electrospray ionization mass spectrometry (ESIMS), ICPMS allows the analyst to quickly find, characterize and identify target metabolites that carry nutrient elements (P, S, trace metals; “nutrient metabolites”), which are of particular interest to investigations of microbial biogeochemical cycles. This approach has been applied to the study of siderophores and other trace metal organic ligands in the ocean. The original method used mass search algorithms that relied on the ratio of stable isotopologues of iron, copper and nickel to assign mass spectra collected by ESIMS to metabolites carrying these elements detected by ICPMS. However, while isotopologue-based mass assignment algorithms were highly successful in characterizing metabolites that incorporate some trace metals, they do not realize the whole potential of the ICPMS/ESIMS approach as they cannot be used to assign the molecular ions of metabolites with monoisotopic elements or elements for which the ratio of stable isotopes is not known. Here we report a revised ICPMS/ESIMS method that incorporates a number of changes to the configuration of instrument hardware that improves sensitivity of the method by a factor of 4–5, and allows for more accurate quantitation of metabolites. We also describe a new suite of mass search algorithms that can find and characterize metabolites that carry monoisotopic elements. We used the new method to identify siderophores in a laboratory culture of Vibrio cyclitrophicus and a seawater sample collected in the North Pacific Ocean, and to assign molecular ions to monoisotopic cobalt and iodine nutrient metabolites in extracts of a laboratory culture of the marine cyanobacterium Prochorococcus MIT9215.
  • Article
    Iron depletion in the deep chlorophyll maximum: mesoscale eddies as natural iron fertilization experiments
    (American Geophysical Union, 2021-11-17) Hawco, Nicholas J. ; Barone, Benedetto ; Church, Matthew J. ; Babcock-Adams, Lydia ; Repeta, Daniel J. ; Wear, Emma K. ; Foreman, Rhea K. ; Björkman, Karin M. ; Bent, Shavonna M. ; Van Mooy, Benjamin A. S. ; Sheyn, Uri ; DeLong, Edward F. ; Acker, Marianne ; Kelly, Rachel L. ; Nelson, Alexa ; Ranieri, John ; Clemente, Tara M. ; Karl, David M. ; John, Seth G.
    In stratified oligotrophic waters, phytoplankton communities forming the deep chlorophyll maximum (DCM) are isolated from atmospheric iron sources above and remineralized iron sources below. Reduced supply leads to a minimum in dissolved iron (dFe) near 100 m, but it is unclear if iron limits growth at the DCM. Here, we propose that natural iron addition events occur regularly with the passage of mesoscale eddies, which alter the supply of dFe and other nutrients relative to the availability of light, and can be used to test for iron limitation at the DCM. This framework is applied to two eddies sampled in the North Pacific Subtropical Gyre. Observations in an anticyclonic eddy center indicated downwelling of iron-rich surface waters, leading to increased dFe at the DCM but no increase in productivity. In contrast, uplift of isopycnals within a cyclonic eddy center increased supply of both nitrate and dFe to the DCM, and led to dominance of picoeukaryotic phytoplankton. Iron addition experiments did not increase productivity in either eddy, but significant enhancement of leucine incorporation in the light was observed in the cyclonic eddy, a potential indicator of iron stress among Prochlorococcus. Rapid cycling of siderophores and low dFe:nitrate uptake ratios also indicate that a portion of the microbial community was stressed by low iron. However, near-complete nitrate drawdown in this eddy, which represents an extreme case in nutrient supply compared to nearby Hawaii Ocean Time-series observations, suggests that recycling of dFe in oligotrophic ecosystems is sufficient to avoid iron limitation in the DCM under typical conditions.