Grant Katherine E.

No Thumbnail Available
Last Name
Grant
First Name
Katherine E.
ORCID

Search Results

Now showing 1 - 1 of 1
  • Preprint
    Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope fractionation of the Ramped Pyrolysis/Oxidation instrument at NOSAMS
    ( 2017-03) Hemingway, Jordon D. ; Galy, Valier ; Gagnon, Alan R. ; Grant, Katherine E. ; Rosengard, Sarah Z. ; Soulet, Guillaume ; Zigah, Prosper ; McNichol, Ann P.
    We estimate the blank carbon mass over the course of a typical Ramped PyrOx (RPO) analysis (150 to 1000 °C; 5 °C×min-1) to be (3.7 ± 0.6) μg C with an Fm value of 0.555 ± 0.042 and a δ13C value of (-29.0 ± 0.1) ‰ VPDB. Additionally, we provide equations for RPO Fm and δ13C blank corrections, including associated error propagation. By comparing RPO mass-weighted mean and independently measured bulk δ13C values for a compilation of environmental samples and standard reference materials (SRMs), we observe a small yet consistent 13C depletion within the RPO instrument (mean – bulk: μ = -0.8 ‰; ±1σ = 0.9 ‰; n = 66). In contrast, because they are fractionation-corrected by definition, mass-weighted mean Fm values accurately match bulk measurements (mean – bulk: μ = 0.005; ±1σ = 0.014; n = 36). Lastly, we show there exists no significant intra-sample δ13C variability across carbonate SRM peaks, indicating minimal mass-dependent kinetic isotope fractionation during RPO analysis. These data are best explained by a difference in activation energy between 13C- and 12C-containing compounds (13–12ΔE) of 0.3 to 1.8 J×mol-1, indicating that blank and mass-balance corrected RPO δ13C values accurately retain carbon source isotope signals to within 1 to 2‰.