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SUMMARY 

1.) Northern ecosystems may lose large amounts of soil C as the global climate warms over 

the next few decades.  This study describes how soil C loss is related to temperature, 

moisture and chemical composition of organic matter in Alaskan tundra soils, including 

soils that were fertilized annually for eight years prior to the study. 

2.) Fertilized and unfertilized soils from four vegetation types (tussock, intertussock, sedge, 

and heath) were incubated at 7º or 15 °C, and under saturated or well-drained conditions, 

through four 100-day “seasons” separated by 25-45 day frozen periods.    

3.) Losses of CO2 were monitored and total C loss was determined by difference between 

initial and final C stocks. Initial and final organic matter composition was determined by 

separation into non-polar extractable (NPE; mainly fats, oils, and waxes), water-soluble 

(WS; mainly soluble carbohydrates and phenolics), acid-soluble (AS; mainly cellulose 

and related compounds), and acid-insoluble (AIS; “lignin”) fractions.  An isotopic label 

(99% 13C-enriched glucose) was added to track transformations among the C fractions. 

4.) Total C loss during the experiment was 3-32% of initial C mass depending on soil type 

and treatment, with most of the loss as CO2.  Wet sedge tundra soils, with the largest AS 

and AIS fractions, lost the least CO2 and total C.  The added 13C ended up in all C 

fractions, indicating production, as well as loss of all fractions. 

5.) The greatest CO2 and total C losses occurred under warm, well-drained conditions, in all 

soils. The effects of fertilizer treatment were occasionally significant but never large 

relative to the other treatments. 
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6.) Despite the long incubation under standard conditions, there was no evidence for 

convergence in C chemistry among soils as indicated by changes in relative abundances 

of the four C fractions.   

7.) Large and constant rates of C loss even after 4 “seasons” of incubation suggest that a 

large portion of the C pool is potentially mineralizable in all soil types.   

8.) Warming of the Arctic climate and associated thawing of permafrost and the increase in  

soil drainage have the potential to cause a large release of  C.  This C, currently stored in 

soil organic matter, will be released to the atmosphere creating a positive feedback on 

future climate changes. 

 

 

 

 

KEYWORDS:  Soil organic matter, soil carbon, peat, organic matter quality, proximate carbon 

fractions, decomposition, soil respiration, tundra, Alaska, climate change, greenhouse 

warming 
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INTRODUCTION 

 Soils of tundra and boreal ecosystems contain large organic matter stocks, typically as a 

layer of peat that blankets the underlying mineral soil.  Despite the low productivity of northern 

vegetation, organic matter accumulates as peat because decomposition of plant litter is limited by 

low soil temperatures and often wet, anaerobic conditions (Heal et al. 1981, Jonasson et al. 

2001).  The total C storage in this northern peat is globally significant, accounting for about one 

third of the global soil C stock if one includes both tundras and boreal forests (Oechel and 

Billings 1992, Callaghan et al. 2004a).  Soils of northern ecosystems also contain large amounts 

of organic N that is currently unavailable to plants, but is potentially available and could support 

higher productivity if mineralized (Shaver et al. 1991, Nadelhoffer et al. 1992, Weintraub and 

Schimel 2005 a).  

 Controls on soil C stocks and turnover, therefore, are key issues for understanding C 

exchanges between northern ecosystems and the atmosphere.  In this paper, we  determine how 

C losses from peaty soil organic matter are related to its chemical composition, and how that 

composition changes as the organic matter decomposes.  To address these issues we compared 

four soil organic matter types from three tundra ecosystems near Toolik Lake, Alaska.  The 

comparison included both unfertilized soils and soils that were fertilized annually for eight years 

before sampling.  Under laboratory conditions, we determined how temperature and moisture 

conditions affect C losses from these organic matter types.  The experiment also allowed us to 

determine how the chemical composition of different types of organic matter changed over four 

simulated “seasons” of decomposition. 

 The chemical composition or “quality” of soil organic matter is a useful predictor of C 

turnover (Ågren and Bosatta 1996) although a wide range of definitions and fractionation 
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schemes have been used (Sollins et al. 1999, Harmon and Lajtha 1999).  In general, high-quality 

organic matter is defined as that which is more readily processed by microbes and has a higher 

rate of decomposition.  Fresh plant litter and newly-formed organic matter are expected to be of 

higher quality than older, more fully decomposed organic matter in which the more labile 

components have been metabolized (Aerts 1997, Berg 2000).  Species composition of the 

vegetation may also have a strong influence on litter and organic matter “quality” (Berendse 

1994, Cornelissen 1996, Hobbie 1996, Hobbie and Gough 2004).  In this research we 

characterized organic matter quality with a widely used sequential extraction procedure (Ryan et 

al. 1990, Harmon and Lajtha 1999) that breaks soil organic matter into 4 fractions: (1) a “non-

polar extractable” (NPE) fraction extracted in methylene chloride, (2) a “water-soluble” (WS) 

fraction extracted in boiling water, (3) an “acid-soluble’ (AS) fraction extracted in H2SO4, and 

(4) an “acid-insoluble” (AIS) residue.     
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EXPERIMENTAL DESIGN AND METHODS 

Field sites, experiments, and soils 

The soils used in this research came from the Long Term Ecological Research (LTER) 

site at Toolik Lake, Alaska (68°37'N, 149°36'W, elevation 720 m), a site that has been studied 

extensively since the mid-1970s (e.g., Shaver and Chapin 1991, Walker et al. 1994, Shaver 1996, 

Hobbie et al. 2003).  Annual average temperature is approximately –7°C; thus the area is 

underlain by continuous permafrost.  Although frosts can occur at any time, air temperatures are 

generally above freezing in June, July and August; the average temperature in July is 10°C.  Soil 

temperatures during the summer decline steeply with depth, from 10-20°C or more at the surface 

on a sunny day, to 0°C at the bottom of the seasonally-thawed, “active layer.”  The thickness of 

this thawed layer, and the temperatures within it, vary greatly among ecosystem types and among 

years but average 30-60 cm in late July.  Although the soils are frozen during the winter months, 

insulation by snow cover, prevents soil temperatures from reaching the extremes experienced 

aboveground (<-30°C); winter soil temperatures at 10 cm depth average -5 to -8 °C. 

The ecosystem types selected for the present study included: 

(1) dry heath tundra (hereafter, “heath”), dominated by evergreen dwarf shrubs and lichens with 

a thin (1-5 cm) organic mat overlying a deeply-thawed (>1m) rocky glacial outwash soil 

(Shaver and Chapin 1991, Gough et al. 2002);  

(2) wet sedge tundra (“sedge”), dominated by rhizomatous graminoid species with a thick 

organic mat (25-30 cm), the presence of surface water for most of the summer, and an annual 

soil thaw depth of 40-60 cm (Shaver et al. 1998, Johnson et al. 2000, Boelman et al. 2003);  

(3) moist acidic tundra, composed of a mix of deciduous, evergreen and graminoid species 

(Shaver and Chapin 1991, Shaver et al. 2001, Gough et al. 2000, Hobbie et al. 2005).  The 
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organic mat thickness ranges from <5 to >40 cm but averages about 15-20 cm, with a 

summer thaw depth of 40-60 cm.  Because spatial heterogeneity in this tundra is largely 

created by the sedge, Eriophorum vaginatum (Chapin et al. 1979), we sampled separately the 

soils within and beneath tussocks (“tussock”) and the soils between the tussocks 

(“intertussock”). 

Thus, there were four organic matter types compared in this study; i.e., heath, sedge, tussock and 

intertussock.  The sedge, tussock and intertussock soils were similar to those studied by 

Weintraub and Schimel (2003, 2005a, 2005b) and were collected from the same areas within 

200-300 m of the south shore of Toolik Lake. 

All four soil types were collected from control plots and from plots that had been 

fertilized annually for 8 years with 10 g N m-2 y-1 (as NH4NO3) and 5 g P m-2 y-1 (as P2O5).  In all 

sites, the N and P were added each June as granular agricultural fertilizers, as in over 20 previous 

experiments in northern Alaska  (e.g., Shaver and Chapin 1995).  By the time of sampling in 

1997, fertilization had caused major changes in species composition and productivity at all sites 

(Shaver et al. 1998, 2001, Gough et al. 2002).  In addition to the direct input of fertilizer N and P, 

leaf litter inputs had increased 1.5-5 fold, moss cover was much reduced or eliminated, and the 

root mass had increased (Nadelhoffer et al. 2002, Mack et al. 2004).   

 
Soil collection and initial processing 

 Soils were collected in late August 1997 using a 5.08 cm diameter corer in the sedge, 

tussock and intertussock soils, and a 10.16 cm diameter corer in the heath soil.  The corer was 

pushed through the peaty upper organic mat, and the depth of the hole was recorded to account 

for compression of the peat during the coring.  All cores were refrigerated during shipment to 

Woods Hole, Massachusetts, where they were stored at –4°C.  
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 The soil cores were thawed and prepared for incubation in July 1998.  For each core, the 

entire upper organic mat (upper 20 cm in sedge soils) was homogenized after the live plant 

material (roots and rhizomes) was removed.  A subsample was then analyzed for organic content 

and C, N and P content.  Total organic content was determined by ashing at 500 °C, and C and N 

content were determined with a Perkin-Elmer Elemental Analyzer.  Total P was determined by 

the methods of Aspila et al. (1976) as modified by Ruttenberg (1992).   

 A second subsample  of the homogenized organic matter was analyzed using the 

proximate carbon fractionation procedure of Ryan et al. (1990).  This procedure yields four 

organic matter fractions by sequential extraction: non-polar extractives (NPE), hot water-soluble 

(WS), acid-soluble (AS) and acid-insoluble (AIS).  Subsamples for fractionation consisted of 

approximately 2 g of finely ground, oven dried (50°C), homogenized soil.  Each subsample was 

taken through three sequential extractions, with residual soil dried at 50°C for 48 hrs, weighed, 

and sampled for C, N and total P analysis.  Methylene chloride (70 ml) was used to extract NPE 

compounds, including fats, oils and waxes.  The remaining soil was extracted with ~75 ml hot 

water to remove the WS fraction containing bioactive carbohydrates and soluble phenolics.  

Finally, 72% sulfuric acid was used to remove the AS fraction (mainly cellulose and related 

compounds).  The remainder was considered to be the AIS fraction, containing mainly lignin and 

related compounds.  Concentrations of all fractions were corrected for ash content. 

 
Incubation experiment 

 Homogenized organic matter from each soil type was incubated in Conviron PGV36 

growth chambers for ~465 days, including 4 simulated “seasons” of 100 days each.  Each 

“season” included 70 days at constant 7° or 15°C, with a 15-day warm-up and cool-down period.  

Between “seasons” the soils were frozen for 4-6 weeks at –4 °C.  A temperature of 7°C is within 
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the normal summertime range for the upper 10 cm in all of these soils, although there is 

considerable daily, seasonal and depth-related variation.  Heath soils tend to be warmer and 

sedge soils tend to be colder than 7°C.  The 15°C regime was chosen because the 8º C increase 

was large enough that we would expect a significant and measurable temperature response 

(Nadelhoffer et al. 1991) but still within the upper bounds of expected temperature increases in a 

future, warmer climate (ACIA 2004).  The “winter” temperature of -4°C was the coldest 

temperature that could be maintained by these growth chambers, but was similar to temperatures 

in the upper 10 cm in the field, for much of the wintertime, except perhaps in the heath site 

where there is little or no insulating snow cover (G. Shaver and J. Laundre unpublished data).  

There were also two moisture treatments; in the “wet” treatment, the soils were not allowed to 

drain, with the water level kept at the soil surface by the addition of deionized water.  In the 

“moist” treatment, soils were drained to field capacity and then kept at the same weight 

throughout the experiment by the addition of deionized water.  The two temperature and two 

moisture treatments were applied factorially to all 8 soil types (7W=7°C, wet; 15W=15°C, wet; 

7M=7°C, moist; 15M=15°C, moist). 

 Soils were incubated in 5.08 cm diameter core tubes (3.8 cm for heath soils) made of 

polyvinyl chloride (PVC).  The tubes were capped at the bottom, with a screen-covered sample 

port for solution sampling and drainage control.   Four tubes containing the control soils and 3 

tubes containing fertilized soils were assigned to each treatment (7W, 15W, 7M and 15M).  

Between measurements the tubes were covered with loose foil caps to reduce moisture loss.  

Initial fresh weight of the incubated organic matter varied from 24-298g, depending primarily on 

the thickness of the upper organic mat in each core.  Initial dry weights were 5-80g, estimated by 

dividing the wet weight by the wet:dry mass ratio as determined from subsamples of the initial 
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homogenized soils.  At the end of the experiment, the remaining organic matter in each tube was 

dried, weighed, and analyzed by the same methods as the initial homogenized soils.  

 
Isotopic labeling 

 Trace amounts of 13C (as 99%  13C-enriched glucose) were added to two tubes of each of 

the unfertilized soils at the start of the incubation. The glucose was dissolved in water and 

applied in volumes that varied depending on the initial estimated soil dry mass.  For example, 

tubes from the heath site, containing soil that weighed approximately 20g on average, received 

an average of 0.0238g of  13C; and the sedge site soils, weighing an average of 45g, received an 

average of 0.0595g  of 13C.  To determine the fate of the 13C, at the end of the incubation, each of 

the four C fractions from each labeled core was analysed using a Finnegan Delta S isotope ratio 

mass spectrometer (Fry et al. 1992).  

 
C losses 

Losses of C as CO2 were measured 10 times per “season,” at the beginning and middle of 

the warm-up period, at the middle and end of the cool-down period, and 6 times (every 2 weeks) 

during the “season”. The “winter” CO2 flux was measured at -4°C after the first growing season, 

and this flux was assumed to be the same in all frozen periods.  The CO2 flux measurements 

were made using a LiCor LI6200 infrared analyzer attached to the incubation tubes to form a 

closed loop from the tube through the analyzer (Johnson et al. 1996).  The flux is calculated as a 

result of knowing the rate of increase in CO2 concentration in a closed system, the volume of 

airspace above the soil, the mass of the soil, temperature and barometric pressure.  Time-

integrated losses of CO2–C were calculated for each core by linear interpolation between 

successive measurements.   
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 Total C losses were calculated from the changes in total core mass and C content.  The 

initial dry mass of each core was estimated using wet:dry mass ratios determined from 

subsamples of the initial homogenized soils.  Initial C mass and masses of each C fraction were 

calculated from total C and organic matter percentages of the dry mass.  Overall losses were 

estimated by subtracting the measured final mass from the initial estimates.  

 
Statistical analysis 

 Statistical analyses were completed using SYSTAT 8.0 and 10.0 software (© SPSS 

Incorporated, 1998).  The principal analyses were factorial analyses of variance (ANOVA) by 

soil type (H, S, T, or I), with fertilizer treatment, moisture and temperature as factors.  Where 

appropriate the data were log-transformed to achieve homogeneity of variance.  Results of the C 

fraction analysis for both initial and final chemical composition, were analyzed using ANOVA 

for individual C fractions, and discriminant analysis and MANOVA (DISCRIMINANT and 

ANOVA procedures in SYSTAT) to compare overall differences among soils from the 

beginning to the end of the incubation.  In the multivariate analyses, the amounts in each C 

fraction were calculated per gram of bulk soil, rather than per gram of organic matter. 
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RESULTS: 

Homogenized soils before incubation 

 The soils varied in their C, N, and P concentrations (Table 1).  C concentrations ranged 

from 28-38%, with %C in fertilized intertussock soils slightly lower than controls and %C in 

fertilized tussock soils slightly higher than controls.  Total C and N concentrations were much 

higher in the sedge soils (38% and 2.5%) than in the other three soils.  There was little or no 

effect of fertilizer on N concentration although N concentration was slightly lower in fertilized 

intertussock soils than in controls.  Total P varied from 0.85-1.20 mg g-1, with higher 

concentrations in fertilized soils. 

 The homogenized soils also differed in concentrations of the four C fractions (Fig. 1, 

Table 2).  The largest of the fractions was consistently either the acid-insoluble (AIS) fraction or 

the acid-soluble (AS) fraction, and the smallest was always the nonpolar extractable (NPE) 

fraction.  The water-soluble (WS) and NPE fractions were the most variable among sites.  The 

sedge soils stood out for their high total organic matter concentrations (sum of the four fractions) 

and for their low concentrations of WS.  Overall, although fertilizer effects and soil type x 

fertilizer interactions were significant for all but the WS fraction, the magnitude of the fertilizer 

effect was small relative to the differences among soil types (i.e. sums of squares for the soil type 

effect explained about three times as much of the variance).  The differences among the 8 soils 

are shown clearly in a discriminant analysis (Fig. 2).  The first discriminant function (horizontal 

axis) explains 63% of the variance and clearly distinguishes the sedge soils from all others. 

Distribution along this axis is correlated with high AIS and AS concentrations (box in Fig. 2).  

The second discriminant function (vertical axis) explains an additional 17% of the variance and 

is  correlated with high NPE concentration.  This second function clearly separates control from 
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fertilized tussock and intertussock soils, reflecting the very small NPE fraction in the fertilized 

soils (Fig. 1). 

 
CO2–C Loss 

 Integrated CO2-C losses ranged from <2% to >30% of initial C content (Fig. 3), and 

treatment effects were highly significant for all soil types (Table 3; differences among soil types 

and soil type x treatment interactions were also highly significant in a 4-way ANOVA, results 

not shown).  CO2 loss during the “winter” periods was always less than 5% of total CO2 loss, due 

both to the low respiration rates at -4ºC and to the relatively short frozen period.  Although 

respiration during winter can be significant on an annual basis (e.g., Zimov et al. 1996), the rate 

of respiration at -4°C is 1-2 orders of magnitude lower than at 7ºC or 15ºC (Mikan et al. 2002).  

The sedge soils had the lowest CO2-C losses in all treatments, but all four soils had higher CO2-C 

losses at 15ºC than at 7oC and higher CO2–C losses in the M than in the W treatments 

(temperature effects were not significant in Heath soils).  There was also a temperature x 

moisture interaction in all soils (not significant in Heath), because the effect of warming was 

smaller in W than in M treatments.  Fertilizer had little or no effect on CO2-C loss except in 

tussock soils, where CO2-C losses from fertilized soils were greater than controls in M 

treatments, but not in W treatments, leading to a significant fertilizer x moisture interaction.   

 
C mass loss 

Total C losses were calculated as the difference between the initial and final C masses of 

each core, and ranged from less than 4% to nearly 30% of initial C mass (Fig. 4).  The tussock 

and intertussock soils consistently lost the most total C, while the heath soils were intermediate 

and the sedge soils lost the least C.  Higher temperature and lower moisture consistently caused 
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greater C losses, with a significant temperature x moisture interaction in the heath and tussock 

soils (Table 3).  Fertilizer effects were also significant in three of the four sites, but the fertilizer 

treatment reduced C losses relative to controls in the tussock and intertussock soils and increased 

C losses in the sedge soils (soil type x fertilizer interaction significant at P<0.001 in the 4-way 

ANOVA, results not shown).   

Total C losses were consistently greater than or approximately equal to CO2-C losses, 

with the difference potentially accounted for by methane (CH4) losses and dissolved C losses in 

water drained from the cores (Johnson et al. 1996).  Although we did measure both CH4-C and 

dissolved organic C (DOC) losses, neither is reported because the DOC losses were consistently 

small (less than 2% of initial C mass), and the CH4-C measurements were compromised by 

frequent high values, probably due to bubble emission.  Estimated CH4-C losses were greatest in 

the sedge soils, however, particularly in the 7W and 15W treatments where there is a large 

difference between CO2-C losses and total C losses (Fig. 3 vs. Fig. 4; CH4 data not shown) 

 
Final soil C fractions 

By the end of the experiment, the concentrations and relative abundances of the four C 

fractions had changed considerably.  However, because the individual fractions changed 

similarly in all soils and treatments, it is difficult to discern any consistent or large differences 

due to fertilizer, temperature, or moisture treatment by determining the concentrations of the 

fractions.  The overall pattern of change in the soil C fraction is clearer in a comparison of their 

relative changes in mass (Fig. 5).  In this comparison,  the NPE fraction increased in mass by at 

least 75% in every soil type and treatment.  The increases in NPE were unaffected by 

temperature or moisture, but in the intertussock and tussock soils there was a strong fertilizer 

effect (Table 4), leading to 3-5 fold greater NPE accumulation in the fertilized soils. In contrast, 
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the WS fraction decreased in mass over the course of the incubation, in every soil type and 

treatment.  The decreases in WS mass were also large, more than 50% in most cases, and were 

unaffected by temperature, moisture or fertilizer treatment.  The only exception was in heath 

soils, where the fertilizer caused greater WS losses (Table 4). 

The patterns of change in AS and AIS mass were more complex but in most soils and 

treatments these fractions lost mass (Fig. 5, Table 4).  In the heath, sedge and tussock soils, the 

fertilizer caused larger losses of AIS than in the control samples.  The fertilizer caused either less 

AS loss or more AS accumulation in the heath and sedge soils while in the tussock soils there 

was greater AS loss in fertilized treatments. 

Overall, there was no evidence for convergence in composition of the organic matter 

among soil types, even after the equivalent of four full seasons of decomposition.  Instead, the 

initial differences among soils were maintained even as all soils in all treatments tended to 

accumulate NPE, to lose much of their WS, and to remain relatively constant or (usually) to 

show small decreases in AS and AIS (Fig. 5).  The lack of convergence is shown clearly in a 

discriminant function analysis comparing the composition of the initial soils with that of the 

post-incubation soils from the four temperature x moisture treatments (Fig. 6).  In this analysis, 

the first discriminant function accounted for 71% of the total variance in the data set and 

separated the groups in a sequence that was nearly identical to the analysis of the initial soils 

only; that is, the first discriminant function was positively correlated with the AIS fraction, with 

the SC and SF soils at the far right, the TF and HC soils in the center, and the others to the left 

(compare Figs. 2 and 6).  The second discriminant function accounted for an additional 21% of 

the variance and was positively correlated with the NPE fraction and negatively correlated with 

the WS fraction, i.e. the two fractions that changed the most in all soils and treatments (Fig. 5).   
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Thus, the first discriminant function clearly distinguished among the 4 soil types with or 

without fertilizer, mostly on the basis of AIS content, while the second function distinguished all 

post-incubation soils from all pre-incubation soils, mostly on the basis of NPE and WS content 

(Fig. 6).  Neither of these two functions (which together accounted for 92% of the variance in the 

data) was effective at distinguishing the 4 temperature and moisture treatments within any of the 

8 soils.  As a result, the group centroids representing the post-incubation temperature and 

moisture treatments are tightly clustered by soil type and in all but one of 32 cases (one of the TF 

treatments) they are above and to the right of the corresponding group centroid, representing the 

initial soil composition.  

 
Fate of added 13C 

 Total recovery of 13C at the end of the incubation ranged from 8-17% of the amount 

added (Fig. 7; only control soils were labeled).  In all the soil samples, less 13C was recovered in 

the 15°C  treatments than at 7°C, probably due to higher respiration at the higher temperature.  

The temperature effect was highly significant (P<0.001) in a 3-way ANOVA with site, 

temperature and moisture as main effects (data not shown) and was significant to at least P<0.07 

in all four ANOVAs by soil type (Table 5).  Moisture had no large effect on 13C recovery 

although in the intertussock soils 13C recovery was slightly higher in the W treatments (P<0.05). 

 The 13C label was recovered from all C fractions in all soil types and treatments, with 

only two exceptions (Fig. 7).  The exceptions were the NPE fraction in heath soils in the 7M 

treatment, and in tussock soils in the 15M treatment, where in both cases 13C levels were not 

significantly lower  than background leading to a negative estimate of 13C accumulation in NPE.   

In general, 13C recovery in the NPE and AIS fractions was greater at 7oC than 15oC and 

significantly so in the W than the M treatments, in the heath and intertussock soils (Table 5).  In 
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contrast, 13C recovery in the WS and AIS fractions was greater at 15oC than at 7oC and in the M 

than in the W treatments, particularly in the heath and intertussock soils.   
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DISCUSSION 

Site differences predominate 

The heath, sedge, tussock, and intertussock soils differed greatly in their C loss over four 

“seasons” of incubation, with among-site differences generally greater than within-site responses 

to temperature, moisture and fertilizer treatment.  Although we would expect the microbial 

communities of the different soil types to be somewhat different initially due to their different 

soil environments as well as their different organic matter composition in the field, the long 

incubation time under identical temperature, moisture, and fertilizer conditions should, if 

anything, have promoted convergence rather than divergence in community composition by the 

end of the experiment.  Thus, the most likely explanation for the large among-site differences in 

C loss is the differences in chemical “quality” or decomposability of the organic matter in the 

four soils.  Also contributing to among-site differences in C loss may be differences in soil 

texture and mineral content, which could affect soil water movement, ion diffusion, soil redox 

status and anaerobiosis. 

Differences in chemical quality of soil organic matter have two main causes.  First, 

differences in species composition of vegetation may lead to differences in the chemistry of the 

leaf, stem and root litter that eventually becomes soil organic matter (Hobbie 1992, Aerts 1997, 

Hobbie et al. 2000).   In an earlier survey of litter decomposition at Toolik Lake, Hobbie (1996) 

found that “differences in rates of litter decomposition were more related to carbon quality than 

to nitrogen concentration”.  Based on Hobbie’s (1996) species-by species analyses of leaf, stem 

and root litter, we would expect the graminoid-dominated sites (tussock and sedge) to have 

higher initial AS content and lower AIS in their litter, in comparison to the intertussock and 

heath sites, because the tussock and sedge vegetation contains relatively little shrub biomass.  
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(Litter from both evergreen and deciduous shrubs has lower AS and higher AIS than 

graminoids.)  However, in all four soils, the initial organic matter analyzed in our experiment 

was significantly different from any litter analyzed by Hobbie (1996); in our study the organic 

matter content was always higher in AIS and lower in NPE than in the litter fraction.  With the 

exception of  the sedge site, our initial organic matter was also higher in WS than in any of 

Hobbie’s (1996) litter types.  Only AS in our initial organic matter was within the range of AS as 

reported by Hobbie. 

The range of variation in NPE, WS, AS, and AIS content in the initial organic matter 

(both control and experimental samples) was narrower than the range among fresh litters 

reported by Hobbie (1996).  This reduced variability among organic matter types suggests 

considerable convergence in chemistry as fresh litter becomes soil organic matter. This 

convergence is consistent with the “litter decay continuum” concept (Berg 2000), in which AIS 

increases in relative abundance over time as a result of the preferential degradation of more 

labile substrates.   

The second major cause of among-site variation in quality of soil organic matter is 

differences in temperature, moisture, pH and aeration.  We already know that these variables 

differ greatly among sites at Toolik Lake (Chapin et al. 1979, Giblin et al. 1991, Shaver et al. 

1998, 2001).   Such differences should lead to differences in the rates of transformation of 

individual C fractions, as well as differences in overall C loss as fresh litter becomes soil organic 

matter (Hobbie 1996, Aerts, 1997, Weintraub and Schimel 2003, Hobbie and Gough 2004).  

Thus, even if fresh litter inputs were the same in all four sites, we would expect organic matter 

composition to differ as a result of decomposition in different environments. 
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As Hobbie (1996) found for fresh litter, we found that the soils with the largest AS and 

AIS fractions lost the least C.  Most of this difference, however, was explained by the large 

differences between the sedge soils and the other three soils, with no correlation between C loss 

and concentration of any C fraction when the sedge soils were excluded.   Weintraub and 

Schimel (2003), also working at Toolik Lake, found that sedge soils had lower respiration rates 

than other soils; in their study they found a positive correlation between CO2 losses and WS, and 

a negative correlation between CO2 loss and AIS:N ratio. 

Although the high AIS in sedge soils may explain the low C losses during incubation, the 

initial litter inputs to the sedge soils were almost certainly low in AIS, as the wet sedge 

vegetation is strongly dominated by graminoids (Hobbie 1996) and contains relatively few, 

poorly-decomposable, but low-AIS mosses (Shaver et al. 1998). The question remains as to how 

such high AIS developed in the sedge soils but not in the others, which have higher AIS inputs in 

their more woody litter.  The likely explanation is that environmental conditions of the sedge 

soils lead to an accumulation of AIS, either by inhibition of decomposition of AIS in the initial 

litter or by accumulation of AIS produced by microbes during decomposition, or both.    

 
Lack of convergence in C chemistry during incubations

In constant environments such as those in our incubations, we expected further 

convergence in organic matter chemistry as microbes selectively processed the C fractions, 

forming organic matter with relatively less labile C (such as WS) and relatively more recalcitrant 

C (such as AIS).  Eventually, a relatively stable composition should be reached, reflecting a slow 

overall C turnover and tighter linkage of the processes associated with the breakdown of the 

remaining organic matter.  This more stable composition should also reflect the production and 

turnover of new C substrates that are products of microbial growth, death and metabolism (Berg 
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2000).   Instead, we found that among-site differences in C chemistry were maintained despite 

the long incubation time, the common treatment conditions, the large changes in individual C 

fractions, and overall C losses of 10-30% in most soils.  Even if we exclude the sedge soils from 

the analysis and focus on the most responsive (15M) treatment, there is no evidence for 

convergence in chemical composition.   

The lack of convergence in C chemistry may have several causes.  Firstly, the lack of 

convergence is consistent with later stages of the “decay continuum” as discussed by Berg and 

others (Berg 2000, Weintraub and Schimel 2003) in which microbes attack the available 

substrates roughly in proportion to their availability, rather than in sequence from highly labile 

sugars to highly recalcitrant lignin.  Decomposition in proportion to availability would tend to 

maintain the relative differences in composition even with large overall C losses.   

Secondly, the fact that the added 13C ended up in all four fractions, and that the NPE 

fraction increased in all soils and treatments, indicates that all four soils had reached the point 

where overall decomposition was regulated mainly by breakdown of recalcitrant lignin and 

lignified carbohydrates (Berg 2000) and the pool sizes of the fractions were determined as a 

balance of new production and loss.  In this state, microbial consumption of organic matter, 

followed by exudation and turnover of microbial bodies, represents the major C turnover 

processes and are new sources of all four C fractions, including chitins and other cell wall 

components that appear in the AS and AIS fractions, as well as microbial (mostly fungal) lipids 

and waxes that appear in the NPE fraction. 

Finally, although we did see rapid declines in respiration over the first simulated season 

or two, indicating rapid depletion of a small labile pool, the steady respiration rates thereafter 

suggest that respiration was not limited by overall C availability but rather by the chemical 
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characteristics of a large, relatively recalcitrant C pool (for brevity, temporal trends in CO2 losses 

are not shown in detail).  Although temperature and moisture treatments did affect this long-

term, stable respiration rate in all soil types, there was no evidence for depletion of this pool, or 

for switching to a different pool, even in treatments with the highest overall C losses (the 15M 

treatment).  Both Hobbie et al. (2002) and Weintraub and Schimel (2003) came to similar 

conclusions in their incubations of soils from Toolik Lake. 

 
Responses to temperature and moisture 

 Responses to the temperature and moisture treatments were generally as expected from 

previous research on similar soils, including soils from near Toolik Lake (e.g., Nadelhoffer et al. 

1991, Hobbie et al. 2002, Mikan et al. 2002, Weintraub and Schimel 2003).  CO2 fluxes 

accounted for most of the total C losses, and the general pattern was of an increase in CO2-C loss 

of 50-100% as temperature increased from 70C to 15 0C, and a decrease in CO2-C loss of 50-75% 

going from freely-drained to saturated moisture conditions.  Temperature sensitivity of CO2 loss 

was greater under drained conditions than under saturated conditions, as observed by many 

others (e.g., Flanagan and Veum 1974).  Effects of temperature and moisture on individual C 

fractions were generally small although occasionally significant.  Because the temperature 

difference between treatments (8ºC) was near the high end of expected climate warming 

scenarios (ACIA 2004), and because the moisture treatments represented extremes of drainage 

(saturated and freely-drained), we would expect responses to actual climate change in the coming 

decades to be somewhere in between the extremes observed in this experiment.  

 
Effects of fertilizer  
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 Although fertilizer effects on initial C chemistry, on C losses during incubation, or on 

final C chemistry were often significant statistically, the magnitude of those effects was small 

relative to the much larger effects of soil type, temperature and moisture.  The only large 

fertilizer effects were in the tussock and intertussock soils, where the fertilizer-treated soils lost 

20-50% less C mass than the control soils.  In addition, the fertilized tussock and intertussock 

soils had the lowest initial NPE concentrations among all soils (Fig. 1) and the greatest initial 

difference between fertilized and control soils in the discriminant analysis (Fig. 2).  Over the 

course of the incubation, the fertilized tussock and intertussock soils exhibited a 3- to 6-fold 

increase in the NPE fraction than the controls (Fig. 9). Because these fertilized soils were 

initially lower in NPE, the larger increase in NPE in fertilized soils, if anything, would have 

contributed to convergence in C chemistry in the tussock and intertussock soils in the final 

discriminant analysis (Fig. 10).  The reason for the effects of pre-incubation fertilizer addition on 

NPE accumulation in these two soils is not clear although the difference must reflect some 

difference in microbial metabolism or community composition.   

 Schimel and Weintraub (2003; Weintraub and Schimel 2005b), based in part on their 

work at Toolik Lake (Weintraub and Schimel 2003), suggest that reduced C losses from 

fertilized soils relative to the controls may reflect N-limitation of microbial growth, as C is 

redirected from waste respiration to microbial growth when additional N is available.  In other 

studies, N addition has had a wide range of effects on C turnover (e.g., Neff et al. 2002, Giardina 

et al. 2004, Pregitzer et al. 2004).  Our study differed, however, in that the 8 years of fertilizer 

addition before the start of the incubation was not continued during the incubation.  Thus, the 

major effect of the fertilizer should have been as a determinant of the initial soil chemistry, 
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reflecting fertilizer effects on decomposition, as well as litter inputs over the previous eight 

years.   

 In contrast, Mack et al. (2004) found that 20 years of fertilizer addition to a tussock 

tundra at Toolik Lake caused a 25-30% net loss of C from the entire soil profile relative to 

controls, despite a greater than 2-fold increase in litter input over the 20 years.  This is the 

opposite of what we found in the incubation of fertilized tussock and intertussock soils.  

However, our initial sampling of tussock and intertussock soils suggested that both the thickness 

of the organic mat and its bulk density were lower in fertilized tussock and intertussock soils 

than in the controls although the differences were not significant.  Resampling of the same plots 

in 2002 (the 13th year of fertilizer treatment) also showed thinner organic mats and lower bulk 

densities in fertilized tussock and intertussock soils (H. Rueth, unpublished data; M. 

Sommerkorn and K. Clemmensen, unpublished data).   

 The fact that tussock and intertussock soils lose C in long term fertilizer experiments 

(Mack et al. 2004) while incubated soils from the same plots lose C less rapidly than the controls 

(Schimel and Weintraub 2003, this study), indicates that additional factors must be important in 

regulation of overall soil C turnover.  Perhaps the most important factor is the presence of live 

vegetation and its inputs of fresh litter and other labile C such as exudates and leachates.  

Jonasson et al. (2004), for example, showed that plants and their litter have significant effects on 

microbial C, N and P mass, and on the respiration rate of subarctic heath soils from Abisko, 

Sweden.  In our incubation experiment there were no live plants or fresh litter.   

  
Conclusions and Scaling up 

 We conclude that in Alaska tundra ecosystems much of the site-to-site variation in C 

losses from soil organic matter is related to the chemical quality of the organic matter and to 
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temperature and moisture conditions.  The minor effects of long-term fertilizer addition on C 

loss, under the conditions of this experiment, were probably the result of effects on organic 

matter quality at the start of the incubation rather than any effect of higher N or P availability 

during the incubation.  The amount of C that can be  potentially mineralized in these soils is 

large, so the rate of C loss is determined more by the relative abundance of substrates of varying 

quality than by depletion of a small, labile pool.  All four C fractions that we studied both lost 

and gained C, indicating that even the most recalcitrant fractions are at least somewhat 

mineralized and that microbial products also are added to these pools.  The lack of convergence 

in C chemistry over the course of these long-term incubations is a reflection of the turnover of all 

four fractions.   

 As the arctic climate warms in the coming decades and centuries (ACIA 2004), we 

expect that soil organic matter will lose C at a rate that may continue for many years even 

without fresh, labile soil C inputs.  This C loss will be higher if the climate is drier and/or the 

soils are better drained.  The rates of C loss will also vary among the major ecosystem types, 

with the lowest loss rates in wet sedge tundra even under warmer and drier conditions.  Most of 

the losses will be as CO2 although CH4 losses may also increase under warmer and wetter 

conditions (Christensen et al. 2003, Callaghan et al. 2004b).   

 The major remaining uncertainties include: (1) interactions of the C cycle with other 

elements, particularly N and P; and (2) interactions of relatively old soil organic matter with 

living plants.  Effects of other elements have not been studied in detail in lab experiments on 

tundra soils, but modeling and incubation studies are consistent with N-limitation (Schimel and 

Weintraub 2003, Weintraub and Schimel 2003, 2005b), and long-term addition of N and P 

fertilizer in tussock tundra leads to large overall C losses (Mack et al. 2004).  In the present study 
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the initial N content was not strongly affected by the pre-incubation fertilizer addition; although 

P content was consistently higher in fertilized soils, it had no clear effect on C losses. Effects of 

live plants, through root exudates, mycorrhizal associations, and the competitive effects of plants 

on microbial growth and uptake, can be highly significant (e.g., Loya et al. 2002, Schimel and 

Bennett 2004, Schmidt et al. 1997, 2002, Jonasson et al. 2004, Olsrud et al. 2004, Pendall et al. 

2004).   In the present study we isolated soil organic matter from these effects, but isolation and 

quantification of plant effects on C turnover in soil organic matter is a particularly high priority 

for future research. 
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Table 1.  Initial homogenized soil organic matter properties (before incubation).  For each 
soil type, significant differences (P<0.05) between control ( C ) and fertilized (F) 
treatments are indicated in bold. 
 
Soil type Treatment %C %N Total P (mg/g) 
  mean SE mean SE mean SE 
        
Heath C  32.08 0.44 1.28 0.03 1.02 0.02 
  F  28.8 1.58 1.33 0.07 2.05 0.07 
        
Intertussock C 31.08 0.54 1.32 0.01 1.20 0.01 
  F 28.55 0.08 1.27 0.01 1.63 0.02 
        
Sedge C 38.38 0.06 2.52 0.01 0.85 0.00 
  F 37.89 0.19 2.49 0.01 1.11 0.01 
        
Tussock C 30.53 0.79 0.92 0.04 0.89 0.03 
  F 36.15 0.99 0.99 0.02 1.14 0.00 
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Table 2.  Summary of ANOVA results for soil type and fertilizer effects on initial, 
homogenized organic matter fraction concentrations (g OM per g bulk soil).  Asterisks 
denote significance at P<0.1 (+), P<0.05 (*), P<0.01 (**), and P<0.001 (***). 
 
 Organic Matter Fraction 
Effect NPE WS AS AIS 

Sum of 
fractions 

      
Soil type (S) *** *** *** *** *** 
Fertilizer (F) ***  *** ***  
S x F *** + *** *** *** 
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Table 3.  Summary of 3-way factorial ANOVA results for effects of fertilizer, 
temperature, and soil moisture treatments on cumulative CO2-C loss and total C mass loss 
in the long-term soil incubation experiment.  “C mass loss” is the C loss calculated as the 
difference in C mass between the start and end of the experiment.  Asterisks denote 
significance at P<0.05 (*), P<0.01 (**), and P<0.001 (***). 
 
  Soil type 
Variable Effect Heath Intertussock Sedge Tussock 
CO2 Fertilizer (F)    *** 
 Temperature (T)  *** *** *** 
 Moisture (M) *** *** *** *** 
 F x T     
 F x M    *** 
 T x M  *** * *** 
 F x T x M     

Fertilizer (F)  *** ** *** C mass loss 
Temperature (T) *** ** *** *** 

 Moisture (M) ***   *** 
 F x T     
 F x M     
 T x M *   * 
 F x T x M     
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Table 4.  Summary of soil type-by-soil type ANOVA results for effects of fertilizer, 
temperature, and soil moisture treatments on the proportional change (increase or 
decrease) in the four organic matter fractions in the long-term soil incubation experiment.  
All data were transformed as LOG10(100+% change from initial value). NPE=nonpolar 
extractable; WS=water soluble; AS=acid soluble; AIS=acid insoluble.  Asterisks denote 
significance of main effects and interactions at P<0.1 (+), P<0.05 (*), P<0.01 (**), and 
P<0.001 (***). 
 
  Soil type 
Variable Effect Heath Intertussock Sedge Tussock 
NPE Fertilizer (F) * ***  *** 
 Temperature (T)     
 Moisture (M)     
 F x T     
 F x M     
 T x M     
 F x T x M     
      
WS Fertilizer (F) **    
 Temperature (T)     
 Moisture (M)     
 F x T     
 F x M     
 T x M     
 F x T x M     
      
AS Fertilizer (F) ***  *** * 
 Temperature (T)  * ** * 
 Moisture (M)    * 
 F x T     
 F x M     
 T x M     
 F x T x M     
      
AIS Fertilizer (F) ** * ***  
 Temperature (T) +  + ** 
 Moisture (M)  **  *** 
 F x T     
 F x M    * 
 T x M   +  
 F x T x M     
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Table 5.  Summary of soil type-by-soil type ANOVA results for recovery of 13C as 
percent of the initial amount of 13 C added, for bulk soil and by soil C fraction.  Because 
only the control, unfertilized soils were labeled, there is no test for a fertilizer effect.  
NPE=nonpolar extractable; WS=water soluble; AS=acid soluble; AIS=acid insoluble.  
Asterisks denote significance of main effects and interactions at P<0.1 (+), P<0.05 (*), 
P<0.01 (**), and P<0.001 (***). 
 
  Soil type 
Variable Effect Heath Intertussock Sedge Tussock 
Total 13C Temperature (T) ** *** + ** 
 Moisture (M)  *   
 T x M     
      
13C NPE Temperature (T)  *    
 Moisture (M) + *  + 
 T x M     
      
13C WS Temperature (T) * **   
 Moisture (M) ** ** +  
 T x M * +   
      
13C AS Temperature (T) * **   * 
 Moisture (M) ** *   ** 
 T x M      
      
13C AIS Temperature (T) ** *   * 
 Moisture (M) *** ***   * 
 T x M **      
      
 
. 



LIV_ms_1_GRS_2006_Final_Feb_15.doc 

 
 

Initial OM fractions

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

HC HF IC IF SC SF TC TF

g 
O

M
/g

 b
ul

k 
so

il
Initial OM fractions

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

HC HF IC IF SC SF TC TF

g 
O

M
/g

 b
ul

k 
so

il
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Initial concentrations (g organic matter per g bulk soil)  of the four organic matter fractions in homogenized soils used in the 

incubation experiment.  Black segments=acid insoluble (AIS) fraction; lower hatched segments=acid soluble (AS) fraction; 
clear segments=water soluble (WS) fractions; upper hatched segments = nonpolar extractable (NPE) fraction.  Heath, 
intertussock, sedge, and tussock soil types are indicated by the letters H, I, S, and T, respectively; C indicates control soils and 
F indicates fertilized soils. 
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Figure 2.  Discriminant analysis of organic matter fraction data in Figure 1.  There were 8 groups of 5 replicate samples, each group 

representing one of the initial 8 soil type x fertilizer combinations. Each sample was characterized by its AIS, AS, WS, and 
NPE concentrations.  The first discriminant function (horizontal axis) accounts for 63% of total variance, and the second 
discriminant function accounts for an additional 17%. Both axes are highly significant by Wilk’s λ criterion (P<0.001), 
indicating significant differences among groups on both axes.  The box at lower right shows canonical discriminant function 
loadings for each organic matter fraction (i.e., the relative correlations of each fraction with each of the first two discriminant 
functions).  Each point on the graph represents a single sample.  HC=heath control; HF=heath fertilized; IC=intertussock 
control; IF=intertussock fertilized; SC=sedge control; SF=sedge fertilized; TC=tussock control; TF=tussock fertilized. 
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Figure 3.  Integrated CO2-C losses over the duration of the incubation experiment, as percent of the initial C mass.  Unfilled bars are 

control soils; filled bars are fertilized soils.  7M=moist, 7°C; 15M=moist, 15°C; 7W=wet, 7°C; 15W=wet, 15°C.   
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Figure 4.  Total C losses as percent of initial C content, calculated for each core as the change in C mass from the start to the end of 

the experiment. (clear = control, filled = fertilized). 
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Figure 5.   Final organic matter composition in the incubation experiment, expressed for each fraction as the percent change in fraction 

mass, i.e. (((Final fraction mass minus initial fraction mass)/Initial fraction mass)*100).  Bars represent the four organic matter 
fractions at the end of the incubation experiment, expressed as fractions of the initial amount of organic matter.  From left to 
right within each group, these are: first hatched bars = nonpolar extractable (NPE) fraction; clear segments = water soluble 
(WS) fraction; black bars = acid soluble (AS) fraction; second hatched bars = acid insoluble (AIS) fraction.  Heath, 
intertussock, sedge, and tussock soil types are indicated by the letters H, I, S, and T, respectively; C indicates control soils and 
F indicates fertilized soils.  7M=moist, 7°C; 15M=moist, 15°C; 7W=wet, 7°C; 15W=wet, 15°C. 
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Figure 6.  Discriminant analysis of initial and final organic matter fraction data. In this analysis, there were 40 groups including the 8 

initial soil type x fertilizer treatment combinations and the 32 final soil type x fertilizer x temperature x moisture treatments.  
Each sample (2-5 samples per group) was characterized by its AIS, AS, WS, and NPE concentrations, calculated as g organic 
matter per g bulk soil.  Each point on the graph represents the centroid for each group.  The 8 large-font data points (all in the 
lower half of the graph) represent the group centroids for the 8 initial homogenized soils, and the 32 smaller-font data points 
(all in the upper half) represent the group centroids for the final, post-incubation soils (8 initial soils x 2 temperature x 2 
moisture treatments).  The first discriminant function (horizontal axis) accounts for 71% of total variance in the data set, and 
the second discriminant function accounts for an additional 21%. Both axes are highly significant by Wilk’s λ criterion 
(P<0.001), indicating significant differences among groups on both axes. HC=heath control; HF=heath fertilized; 
IC=intertussock control; IF=intertussock fertilized; SC=sedge control; SF=sedge fertilized; TC=tussock control; TF=tussock 
fertilized.  
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Figure 7.  Recovery of 13C at the end of the incubation experiment as a percentage of the total amount added to each core at the start of 

the experiment.  Black segments=acid-insoluble (AIS) fraction; lower hatched segments=acid-soluble (AS) fraction; clear 
segments=water-soluble (WS) fractions; upper hatched segments = nonpolar extractable (NPE) fraction.  Heath, intertussock, 
sedge, and tussock soil types are indicated by the letters H, I, S, and T, respectively.  Only the control soils received the 13C-
labeled glucose.  7M=moist, 7°C; 15M=moist, 15°C; 7W=wet, 7°C; 15W=wet, 15°C.  Error bars indicate standard error of the 
mean for the sum of the 13C in all four C fractions. 
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