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INTRODUCTION

Processes controlling distributions of marine plank-
ton operate across a wide range of time–space scales,
and predicting abundance patterns in these organisms
remains an elusive goal, despite more than 100 yr of
research (Marine Zooplankton Colloquium 1989,
2001). Due to the inherently patchy nature of plankton
(Fasham 1978, Haury et al. 1978, Omori & Ikeda 1984,
Mackas et al. 1985), traditional sampling methods have
not been able to adequately resolve their distributions.
New optical imaging systems have the capability to

sample major plankton taxa, including delicate forms
and particulate matter, nearly continuously over a
broad range of time and space scales (Davis et al.
1992b, Gallager et al. 1996, Norrbin et al. 1996,
Ashjian et al. 2001, 2005, in press). Due to the large
amount of image data from optical samplers (e.g.
Video Plankton Recorder, VPR; Davis et al. 1992a,
1996, 2005), fully automatic analysis is highly desir-
able.

The VPR was designed to identify plankton accord-
ing to major taxonomic group (e.g. copepods, chaeto-
gnaths; Davis et al. 1992a,b). VPR images are collected
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at ship speeds of 4 to 6 m s–1 and at a working distance1

of 30 to 50 cm, so that the optical quality of the images,
although good, is obviously less optimal than that
obtainable under a laboratory microscope. Existing
optical imaging samplers yield an intermediate level of
taxonomic resolution, providing information beyond
the biomass and size distributions obtained from
acoustical samplers (Holliday et al. 2003, Wiebe et al.
2002) and particle size/shape counters (Herman 1992,
Herman et al. 2004). Automatic identification of field-
collected plankton images, even to the major taxa, has
proven difficult, owing to lighting variability, projec-
tion variance, and occlusion (cropping).

Automatic identification involves extracting a set of n
features from an image, mapping these features to a
point in the n-dimensional feature space, and then
dividing the feature space into regions belonging to dif-
ferent taxa. The decision boundary is based on the loca-
tions of training images (labeled images) in the feature
space. Thus, automatic identification requires manually
sorting a subset of images that are used to ‘build’ or
‘train’ the classifier. The training process involves find-
ing the optimal decision boundary in the feature space.

Research on automatic plankton classification has
been on-going for more than 2 decades (Jeffries et al.
1980, 1984, Rolke & Lenz 1984, Gorsky et al. 1989,
Berman et al. 1990, Hofstraat et al. 1994, Costas et al.
1995). Early studies focused on well-controlled labora-
tory-obtained images. More recently, artificial neural
networks (NN) and support vector machines (SVM)
have been introduced to this field (Simpson et al. 1991,
Boddy & Morris 1993, Culverhouse et al. 1994, 2003
Tang 1998, Tang et al. 1998, Toth & Culverhouse 1999,
Davis et al. 2004, Luo et al. 2004, Hu & Davis 2005).
Most of the previous classification systems were
trained and tested on a small set of selected distinctive
images. Davis et al. (2004) applied real-time automatic
classification methods on field data to estimate mean
abundance of major taxonomic groups while sampling
underway at sea. They showed that including difficult
and human unidentifiable images in the training or
testing of a classifier greatly reduces the prediction
accuracy (cf. Luo et al. 2004). On the other hand, their
work also showed that it was important to include an
‘other’ category (including rare and unidentifiable
taxa) to better estimate abundance (cf. Grosjean et al.
2004).

Early identification systems mainly used shape-
based features (e.g. morphological measurements and
Fourier descriptors). Due to the early success on labo-
ratory-obtained images, shape-based features are still
a mainstay in the field of plankton recognition.
Recently, Hu & Davis (2005) suggested using texture-
based features to help overcome difficulties in classifi-
cation of field-collected images, such as occlusion,

non-linear illumination, and projection variance. The
automatic classification system used in these previous
studies (Davis et al. 2004, Hu & Davis 2005) yielded
abundance patterns that were, in general, very similar
to those obtained by manually sorting all the images in
the tow. However, in the regions of low relative abun-
dance, the abundance estimation from automatic clas-
sification was often overestimated, due to the rela-
tively high proportion of false alarms (false positives).
A manual correction step (i.e. manual removal of false
positives) was needed to obtain accurate abundance in
these regions.

In the present paper, we describe a new dual-
classification method in which a rejection metric is
obtained by ‘voting’ with 2 classifiers: (1) an NN classi-
fier built from shape-based features and (2) an SVM
classifier built from texture-based features. Both classi-
fiers must agree on the identification of an image for it
to be considered true, otherwise it is classified as
‘unknown’. Abundance estimation from the dual-
classification system was corrected based on detection
and false-alarm rates. After correction, the abundance
estimation from the automatic classification system
was compared to that derived from manually sorted
results and from previous classification results.

MATERIALS AND METHODS

Data description. Our data came from a 24 h VPR
tow in the Great South Channel off Cape Cod, Massa-
chusetts, in June 1997. The images were taken by a
high-magnification camera, which has an image vol-
ume of 0.5 ml. The total sampled volume during the
deployment was about 2.6 m3. There were >20 000
images in this tow, all of which were sorted manually
into 7 major categories2. The major groups included
5983 copepods, 3656 rod-shaped diatom chains, 478
Chaetoceros chains, 2394 Chaetoceros socialis colo-
nies, 1796 hydroid medusae, 1650 marine snow, and
4304 ‘other’. Most of the images in ‘other’ category
were unidentifiable by human experts; the rest were
rare species, including coil-shaped diatom chains,
ctenophores, chaetognaths, and copepod nauplii (see
Davis et al. 2004, Hu & Davis 2005). From previous
experience (Davis et al. 2004), we found that 200
images per taxon was a reasonable number for the
training set. That limit automatically disqualifies most
rare taxa from being used as separate categories in the
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1 Working distance here is the distance from the center of the
imaged volume to the optical window of the underwater
camera housing

2 Example images of these 7 taxa are given in Davis et al.
(2004) and Hu & Davis (2005)
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classifier. Very rare taxa, the total numbers of which
were between 200 and 400, were also grouped into the
‘other’ category. The manual identification of each
image was treated as the basis for comparison among
different automatic classifiers.

Pattern representations/feature measurements.
Five different types of features were used in our sys-
tem, including shape-based features (moment invari-
ants, morphological measurements, Fourier descrip-
tors, and granulometry curves) and texture-based
features (co-occurrence matrix).

Moment invariants: Moment invariants, introduced
by Hu (1962), are based on normalized central moments,
and are translation, rotation, and scale invariant. They
have been widely used in plankton identification (Jef-
fries et al. 1980, 1984, Berman et al. 1990, Tang 1998,
Tang et al. 1998, Davis et al. 2004, Luo et al. 2004).

Morphological measurements: Jeffries et al. (1980,
1984) first used 7 morphological measurements as fea-
tures to identify zooplankton. The concept of using
morphological measurements as features in plankton
recognition has been commonly accepted ever since
then (Berman et al. 1990, Davis et al. 2004, Lou et al.
2004). In the present study, 6 morphological measure-
ments were used as part of the shape-based feature
set: (1) a shape factor based on the perimeter and area
of the object; (2) a ratio of the maximum and minimum
principal moments of the object; (3) a ratio of the
longest to shortest dimension of the bounding box sur-
rounding the object; (4) a ratio of the width at the cen-
ter to the shortest dimension of the bounding box; (5) a
ratio of the left 1⁄4-width to the shortest dimension of
the bounding box; and (6) a ratio of the right 1⁄4-width
to the shortest dimension of the bounding box (Davis et
al. 2004).

Fourier descriptors: Fourier descriptors (FD) are
well-studied invariant features used to describe the
contour of an object. Depending on what functions are
used to describe the contour, FDs can be grouped into
3 major categories, namely tangent-angle FDs (Zahn &
Roskies 1972), complex FDs (Granlund 1972), and
elliptic FDs (Kuhl & Giardina 1982). FDs are the
Fourier coefficients when the contour function is
approximated by a Fourier series. Normalized FDs are
translation, rotation, and scale invariant. FDs were
used as features to classify plankton images (Jeffries et
al. 1980, 1984, Berman et al. 1990). In this study, we
used a centroidal radius-vector function (distances
from the centroid to perimeter pixels) as the contour
model3. The first 64 elements of the normalized power

spectrum, obtained from the Fourier transform of the
centroidal radius-vector function, were used as a fea-
ture set (Tang 1998, Tang et al. 1998, Davis et al. 2004).

Granulometry: The concept of granulometry was
introduced by Matheron (1975) to study the size distri-
bution of binary images. The operation involves a
series of opening/closing operators, with structuring
elements of increasing/decreasing size (Serra 1982).
Tang et al. (1998) first used granulometry features to
classify plankton images. They found the granulome-
try was more powerful in discriminating plankton
images than common moment invariants and Fourier
descriptors. However, these operators are computa-
tionally expensive. Fast algorithms (Vincent 1993,
Meijster & Wilkinson 2002) were developed for very
limited structural elements. In the present study, Vin-
cent’s (1993) algorithm was used to calculate the linear
opening and closing spectra, as well as pseudo-open-
ing and -closing spectra. Each spectrum has 40 ele-
ments, resulting in 160 features for granulometry.

Co-occurrence matrix: A gray level co-occurrence
matrix (GLCM) was first proposed by Haralick et al.
(1973) as a texture feature to classify satellite images. It
is based on estimation of the joint probability distribu-
tion of pairs of pixels with gray-scale level i and j, spa-
tial distance d, and angle θ in an image. Hu & Davis
(2005) first used GLCM to classify plankton images.
They found that these texture-based features were
more powerful than shape-based features for classify-
ing field-collected plankton images, due to occlusion,
non-linear illumination, and 3D to 2D projection
variance of the images.

Feature extraction. Shape-based features: All the
shaped-based features were stacked into 1 feature
vector. The features included 7 moment invariants,
6 morphological measurements, 64 Fourier descriptors,
and 160 granulometry measurements (Davis et al.
2004). Each feature element was normalized to have
zero mean and unit standard deviation. Principal com-
ponent analysis was applied on the feature vector to
calculate dominant eigenvectors. The first 30 features
associated with the largest eigenvalues were saved
as the feature vector, and the corresponding feature
vectors were saved as a transformation matrix (Tang et
al. 1998).

Texture-based features: Four different distance (1, 4,
8, 16 pixels) pairs and 4 different angles (0°, 45°, 90°,
135°) were used to generate co-occurrence matrices.
For each separation distance, there were 4 co-
occurrence matrices from 4 different angles. Only
the mean and range of these matrices were used to
achieve relative rotation invariance. Normalization was
also applied to the resulting matrices to achieve scale
invariance. The angular second moment (energy),
contrast, correction, variance, inverse-difference mo-
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3 Radius-vector functions are only suitable for star-shaped
contour models. Most plankton images are not star shaped.
However, in a recent experiment, we found the performance
difference for different FDs to be very small
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ment, and the entropy, sum entropy, and difference en-
tropy of these matrices (Haralick et al. 1973) were cal-
culated and used as feature vector elements. Each fea-
ture element was further normalized to have zero mean
and unit standard deviation (Hu & Davis 2005). For
each image, 64 features were used.

Classifiers. Learning vector quantization neural net-
work and support vector machine classifiers were used
in this study.

Learning vector quantization: Learning vector
quantization (LVQ) is a supervised version of vector
quantization. Its objective is to learn a set of prototypes
(codebooks) which best represent each class. We
implemented it with an artificial neural network (Tang
et al. 1998, Davis et al. 2004). LVQ neural network
(LVQ-NN) is a method to divide n-dimensional feature
space into different taxonomic regions by fitting neu-
rons to the training data. The neural network has 2
layers, namely a competitive layer and a linear output
layer. The complexity of the neural network was based
on the number of training images and the number of
taxa in the classifier. For the 200 training images per
taxon, we used 20 neurons per taxon for the competi-
tive layer. The number of output-layer neurons is equal
to the number of taxa. The weights of the neurons for
each class were initialized to the mean of the training
feature vectors for that class plus a small random value.
The network was trained by randomly presenting the
training samples one at a time to the network. For a
given training sample, the nearest neuron was found
(i.e. shortest Euclidian distance in n-space). The taxon
assigned to this nearest neuron was the ‘predicted’
taxon. If the prediction was correct, the weights of this
nearest neuron were updated in such a way to move it
a step closer to that sample in the feature space. Other-
wise, the weights of the nearest neuron were updated
such that it was pushed a step away from that sample
in the feature space. Over-training was avoided by
stopping training early.

Support vector machine: The support vector ma-
chine (SVM) is a margin-based linear machine (Vapnik
1995, 1998). Instead of using neurons, the basic idea of
SVM is to find a hyperplane that separates the training
samples with maximum margin. The capacity of linear
SVM is often limited. In order to deal with the non-
linear problem, an intermediate step is taken to map
original features to a much higher dimensional space;
a hyperplane is then constructed on that higher space.
The trick of the SVM is to pick certain mapping func-
tions, so that the mapping is equivalent to applying a
kernel function on the original features. SVM is closely
related to structural risk minimization and regulariza-
tion theory. It has shown an excellent generalization
property and resistance to over-training in a number of
real-world problems (Mohan et al. 2001, Decoste &

Schölkopf 2002, Mitchell et al. 2004, Hu & Davis 2005,
Kim et al. 2005). SVM is primarily a binary classifier.
Three approaches are often used to extend SVM to the
multi-class case, namely a 1-versus-all approach, a
pairwise approach, and an error-correcting output
codes approach. From our previous study (Hu & Davis
2005), we found that the SVM classifier was not very
sensitive to kernel types and kernel parameters. In this
study, we chose a linear kernel function to avoid extra
labeled validation samples which were needed in
kernel parameter selection. The pairwise approach
was used, since it yielded balanced training in our case
(Hu & Davis 2005).

Dual-classification system. The schematic diagram
of the dual-classification system is shown in Fig. 1.
During the training phase, 2 classifiers were built in
parallel. An LVQ-NN classifier was built from shape-
based features as discussed in the ‘Feature extraction’
section. At the same time, an SVM classifier was built
using texture-based features from the same training
samples. In the classification phase, shape-based and
texture-based features were calculated from all the
images. An LVQ-NN classifier made the identification
based on shape-based features, while an SVM classi-
fier made the identification based on texture-based
features. In the end, a classifier committee was called.
If the labels predicted by 2 classifiers belonged to the
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same class, the sample was labeled as that class. 
Otherwise, the sample was labeled as ‘unknown’.

Classification performance evaluation and abun-
dance correction. Confusion matrix: The confusion
matrix is used to assess the accuracy of automatic clas-
sification. The number of images manually sorted by a
human is given in the columns (1 column per taxon),
while the number of images automatically classified by
the computer is given in the rows (1 row per taxon).
Diagonal elements correspond to agreement between
human and machine. In the present study, the confu-
sion matrix of the dual-classification system was built
in the following way. First, a 7-row by 6-column matrix
was built from a set of training images (200 per taxon)
for 6 dominant taxa (Table 1) using the leave-one-out
method (cross-validation; Davis et al. 2004). The 7th
row in this matrix contains the ‘unknown’ counts. Sec-
ond, 200 images that had been manually sorted into
the category ‘other’ were classified using the dual-
classification system to fill in the 7th column4. The
resulting 7 × 7 matrix was used as a confusion matrix
for the classification system (i.e. Table 1).

From the matrix, some simple indexes of classifier
performance can be calculated. The most used indexes
are ‘probability of detection’ (also known as ‘sensitiv-
ity’ or ‘probability of true positives’) and ‘probability of
false alarm’ (also known as ‘probability of false posi-
tives’). The probability of detection, PD, measures the
probability that the classifier will identify an image
correctly, i.e. PD = true positive counts/(true positive

counts + false negative counts). The probability of false
alarm is the probability that an image will be classified
as a given taxon when it does not actually belong to
that taxon. Another related concept is specificity, SP
(Baldi & Brunak 2001), which is the probability that the
classifier’s prediction is correct for each taxon, i.e. SP =
true positive counts / (true positive counts + false posi-
tive counts). Probability of detection and specificity of
each taxon were calculated from the confusion matrix
to correct the abundance estimation.

Abundance correction: If PD and SP of a classification
system for each taxon are always the same, plankton
abundance estimated from the classification system will
be perfect although the classification system itself is not
perfect. In reality, PD and SP for each taxon may change
for different-sized evaluation data sets. In particular,
the SP of a taxon is positively related to the relative
abundance of the taxon. However, if the variation in PD

and SP of a classification system for each taxon is rela-
tively small in the study area, we can automatically cor-
rect the abundance estimation of a classification system
using the following steps: (1) estimate PD and SP for
each taxon from the confusion matrix; and (2) scale the
abundance estimation from the classification system for
each taxon by the ratio SP/PD for that taxon. In Davis et
al. (2004), false positives were removed manually, so
that that the specificity of each taxon was unity, and the
correction factor for each taxon was 1/PD. This correc-
tion method is different from the statistical correction
method proposed by Solow et al. (2001).

RESULTS AND DISCUSSION

The first 25 images classified as copepods and Chaeto-
ceros socialis colonies by the dual-classification system
and by the single neural network classifier used previ-
ously (Davis et al. 2004) are shown in Fig. 2. For taxa with
high relative abundance (i.e. copepods), the perfor-
mance of dual and single classifiers is very similar, which
implies the 2 classification systems have very close prob-
ability of detection. On the other hand, for taxa with
lower relative abundance (i.e. C. socialis), the dual-
classification system performs much better, because
it has a far lower false alarm rate (Fig. 2). The dual-
classification system has much higher specificity for
C. socialis in regions of low relative abundance (cf. Ta-
bles 1 & 2). In other words, the dual-classification system
makes the specificity less variable with changes in rela-
tive abundance of a taxon, which makes automatic cor-
rection of classification results possible (Tables 1 & 2).
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Table 1. Confusion matrix of the dual-classification system,
using leave-one-out method. Randomly selected images (200
per category) from EN302 VPR Tow 7 were used to construct
the confusion matrix. C1: copepods; C2: rod-shaped diatom
chains; C3: Chaetoceros chains; C4: Chaetoceros socialis
colonies; C5: hydroid medusae; C6: marine snow; C7: other;
C7*: unknown; PD: probability of detection (%); SP: specificity
(%); NA: not applicable. True counts (i.e. human counts) for a
given taxa are given in the columns, while counts by the
classification system are given in the rows. Correct identifica-
tions by the computer are given along the main diagonal,
while the off-diagonal entries are incorrect identifications by
the computer. All data are counts, except in the last row and
last column, which are percent values. Although images of
the category ‘other’ are not needed to train the classification

system, they are necessary to evaluate it

C1 C2 C3 C4 C5 C6 C7 SP

C1 146 0 3 2 1 2 59 69
C2 2 176 2 0 1 1 13 90
C3 0 0 122 1 3 1 2 95
C4 0 0 0 145 2 8 12 87
C5 0 0 5 0 111 6 4 88
C6 1 0 0 3 4 98 4 89
C7* 51 24 68 49 78 84 106 23
PD 73 88 61 73 56 49 53 NA

4 The last classifier built in the leave-one-out method
was used
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Fig. 2. Automatically classified images: comparison of results for (A,C) dual-classification system and (B,D) single neural-network
classifier. The first 25 images classified as (A,B) copepods and (C,D) Chaetoceros socialis by the dual-classification system and
LVQ-NN classifier are shown. For taxa having relatively high abundance, such as copepods, both systems yield very similar results
(21 out of 25 were the same). In contrast, for taxa having relatively low abundance, such as low-abundance regions of C. socialis,
the dual-classification system has much higher specificity (fewer false alarms). False positives are denoted with black frames
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Abundance estimates of 6 dominant taxa were com-
pared according to the following methods: manually
sorted, dual classification with automatic correction, sin-
gle NN classifier of original feature with manual correc-
tion, single NN classifier without correction, and SVM
classifier from co-occurrence feature (Fig. 3). The man-
ual correction method (Davis et al. 2004) requires man-
ual removal of false positive images from the automati-
cally classified results for each taxon. The result was
further corrected by the probability of detection, which
was estimated from Table 2 (last row). The automatic
correction method estimates probability of detection and
specificity for each taxon from the confusion matrix (last
row and last column in Table 1), and used the correction
factor discussed in the ‘Materials and methods’ section.

Except for the copepod category, the manually sorted,
manually corrected, and dual-classification curves lie
almost on top of each other (Fig. 3). The high agreement
between manually corrected and manually sorted results
for copepods is due to the incorrect assumption that the
human-sorted results were perfect and invariant. For this
case, false positive samples were determined using a ref-
erence table from manually sorted images (i.e. no varia-
tions between manually corrected and manually sorted
results) rather than by manually correcting the classifica-
tion results as discussed by Davis et al. (2004). The high
agreement between manually sorted and manually
corrected results of copepod abundance is an artifact of
this treatment. In fact, among the manually sorted
images, there is some overlap between the copepod and
‘other’ categories due to ambiguity in appearance of
some of the ‘other’ images, which may actually have
been copepods oriented in such a way as to make
identification by a human difficult.

According to the study by Culverhouse et al. (2003),
trained personnel can be expected to achieve 67 to 83%
self-consistency in difficult labeling tasks. Our copepod
category should belong to this case. That is to say, if a hu-
man labels all 20 000+ images a second time, the cope-
pod abundance estimation between the 2 human results
is likely to differ. The mean abundance estimation for
copepods between automatically classified and manu-
ally sorted results is very close. The uncertainty in the
manually sorted abundance estimation is comparable
to the abundance difference between automatic and
manually sorted results.

For taxa in high relative-abundance regions, the 3
automatic classification systems agree very well with
each other. However, for taxa having low relative abun-
dance or taxa having low relative-abundance regions,
the reduction of abundance error rate is marked
(cf. Fig. 4). Chaetoceros chains make up <2.5% of total
plankton in this tow. The abundance estimation error of
the dual-classification system is uniformly <50% along
the tow path, which is smaller than the natural variation

for replicate plankton tows (Wiebe & Holland 1968,
Davis et al. 2004). In the regions of extremely low rela-
tive abundance (e.g. Fig. 3 Hours 8 and 12, C. socialis
colonies), the dual-classification system estimates the
abundance significantly higher than manually sorted or
manually corrected abundance.

The reduction in abundance error rates by the dual-
classification system compared to the single NN classi-
fier (Davis et al. 2004), the SVM classifier with co-
occurrence matrices (COM-SVM, Hu & Davis 2005),
and manual correction (Davis et al. 2004) are given in
Fig. 4. For copepods, the manually corrected result
outperforms other methods. As discussed above, this
difference is not significant, due to low confidence of
the manually sorted result. For rod-shaped diatom
chains, the performances of dual classification, manu-
ally corrected, and COM-SVM are very similar. They
all outperform the single NN classifier. Dual classifica-
tion has a significant reduction in abundance error
compared to the single NN and COM-SVM, while it is
close to the manually corrected results. The same is
true for Chaetoceros socialis colonies. The perfor-
mance disagreement happens in the regions of ex-
tremely low relative abundance. As discussed by Ben-
field et al. (1996), these regions could be the limits of
the optical sampling method (i.e. high magnification
VPR camera used). The performance of 4 different
methods on hydroid medusae and marine snow is very
close. The dual-classification method performs slightly
better for marine snow, while the manually corrected
method is better for hydroid medusae.

The advantage of using the dual-classification
system is to reduce the false alarm rate of each taxon
to a level so low that the variation of specificity for
each taxon is low in the whole study region. This
makes fully automatic correction possible. The dual-
classification system substantially decreases the prob-
ability of false alarm, while only slightly reducing the
probability of detection. By rejecting a small portion of
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Table 2. Confusion matrix of the single LVQ-NN classifier,
using leave-one-out method. Images used were the same as
those in Table 1. Abbreviations as in Table 1. All data are
counts, except in the last row and last column, which are 

percent values

C1 C2 C3 C4 C5 C6 C7 SP

C1 132 8 16 2 16 7 54 56
C2 6 171 1 4 7 5 20 80
C3 7 1 123 10 23 22 11 62
C4 6 2 14 153 5 20 14 72
C5 5 5 13 4 105 21 9 65
C6 9 3 20 17 34 109 15 53
C7 35 10 13 10 10 16 77 45
PD 66 86 62 77 53 55 39 NA
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the images as ‘unknown’, identifications are made by
the dual-classification system with higher confidence.
Thus, it is not necessary to classify all the images into
taxonomic groups to achieve better estimation.

Other approaches to incorporate shape-based fea-
tures and texture-based features are certainly possi-
ble. In the simplest example, all available features are
stacked into 1 feature vector and used in training an
SVM or LVQ-NN classifier. We have found that such
an approach is not efficient, and that the result is
almost identical to the COM-SVM method. We have
also tried more sophisticated approaches to reduce
feature dimension without losing discriminant power,
but have thus far met with little success. This approach
requires further research.

A dual-classification system utilizes a greater range of
variation in feature sets and classifiers. The second clas-
sifier provides additional information that the first classi-
fier alone does not possess. It is certainly possible to use
1 type of classifier (e.g. SVM or LVQ-NN) with all types
of features or 1 type of feature for both classifiers. How-
ever, the variability gained by the dual method using
different features and 2 classifiers would be reduced.

The difficulty of general object classification may be
overlooked because humans are so good at visual clas-
sification of objects. We take for granted our ability to
identify facial images without considering the millions
of years of evolution involved. On the other hand, a
computer is taught in <1 h to identify plankton images
that suffer from projection variance, occlusion, non-uni-
form illumination, and noise, using 200 training images
per taxon. The study conducted by Davis et al. (2004)
revealed the difficulty level of this data set. They
showed that the 90%+ accuracy on a selected subset of
these data (Tang et al. 1998) only yielded 60% accuracy
on the entire data set. Although humans are able to
identify some of the images in this data set with a
higher level of taxonomic resolution, in terms of abun-
dance estimation of major taxonomic groups, the dual-
classification method presented here yields results
almost as accurate as those of human experts.

CONCLUSION

In this paper, we used a dual-classification system by
building an SVM classifier on texture-based features
(co-occurrence matrices) and an NN classifier on shape-
based features (moment invariants, Fourier descriptors,
and granulometry) to jointly identify over 20 000 VPR im-
ages. A confusion matrix was built from training sam-
ples. Sensitivity and specificity of the classification sys-
tem were calculated from the confusion matrix to correct
the abundance estimation. After correction, the dual-
classification system can reliably estimate the abun-

dance of a taxon even when its relative abundance is as
low as 2.5%. In regions of relatively low abundance, the
dual-classification system can reduce the abundance es-
timation error by 50 to 100% compared with previous
methods. Because it is fully automatic, this method can
be used for real-time applications, as in our previous
methods (Davis et al. 2004, Hu & Davis 2005).
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