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Seafloor pockmarks occur worldwide and may represent millions of m> of continental shelf erosion, but few
numerical analyses of their morphology and spatial distribution of pockmarks exist. We introduce a
quantitative definition of pockmark morphology and, based on this definition, propose a three-step
geomorphometric method to identify and extract pockmarks from high-resolution swath bathymetry. We
apply this GIS-implemented approach to 25 km? of bathymetry collected in the Belfast Bay, Maine USA
pockmark field. Our model extracted 1767 pockmarks and found a linear pockmark depth-to-diameter ratio

Keywords: . X N !

Pojc/kmarks for pockmarks field-wide. Mean pockmark depth is 7.6 m and mean diameter is 84.8 m. Pockmark
Geomorphometry dist.ribution i; non-randqm, and nearly half of the ﬁelQ‘s pqckmarks occur i.n chains.. The most promingnt
Marine geology chains are oriented semi-normal to the steepest gradient in Holocene sediment thickness. A descriptive
Methane model yields field-wide spatial statistics indicating that pockmarks are distributed in non-random clusters.

Results enable quantitative comparison of pockmarks in fields worldwide as well as similar concave features,

such as impact craters, dolines, or salt pools.
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1. Introduction

First identified in muddy sediments of the Scotian Shelf (King and
MacLean, 1970), pockmarks are seafloor depressions that are found
worldwide in a variety of geologic settings (Hovland and Judd, 1988;
Judd and Hovland, 2007). These craters can measure hundreds of
meters in diameter, may occur in chains kilometers long and, where
present in extensive fields, may dominate the seafloor surface (Fader,
1991; Rogers et al., 2006; Pilcher and Argent, 2007). Despite global
distribution and general association with seafloor fluid escape, the
mechanisms for pockmark formation and evolution remain uncertain
(Ussler et al., 2003).

Analysis of pockmark morphology and spatial distribution relative
to antecedent geology and subsurface fluids (e.g., methane) can
provide insight into fluid-migration pathways, pockmark field
evolution, and possible mechanisms for pockmark generation and
maintenance. In the absence of high-resolution seafloor bathymetry
data, previous characterizations of entire pockmark fields relied upon
visual interpretation of acoustic backscatter data for pockmark
delineation, size statistics and spatial distribution (Fader, 1991; Kelley
et al, 1994; Gontz et al., 2002; Rogers et al., 2006). Although acoustic
backscatter data were the best available in the cited studies,
interpreting size dimensions of concave features, such as pockmarks
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from these data is often ambiguous (Song, 2007). High-resolution
bathymetry data collected by multibeam echosounder and swath
sonar technologies enable the study of seafloor morphology to
reach scales and resolutions similar to studies in subaerial
geomorphology based on digital elevation models (DEMs)
(Hughes Clarke et al, 1996). With one exception (Webb et al.,
2009) these new technologies have not been applied to an entire
pockmark field. Instead, whole-field spatial and morphologic
analysis has ebbed, replaced by characterization of small portions
of a field or focus on individual pockmarks (Pilcher and Argent,
2007; Wildish et al., 2008). This change in emphasis is in part due
to differing research objectives, but also is related to the
challenges associated with feature extraction from acoustic data,
particularly of features exhibiting complex morphologies that exist
over an entire pockmark field.

This paper presents a novel method for pockmark feature
extraction based upon the principals of geomorphometry and
established algorithms for surface analysis (Pike, 1995). We apply
this approach to a well-studied pockmark field located in Belfast Bay,
Maine (Fig. 1). Our objectives are to: 1) develop a technique for
pockmark identification and extraction, which may be applied to
similar landforms/objects (e.g. planetary craters, thermokarst lakes,
dolines, and salt pools); 2) apply this technique to high-resolution
swath bathymetric data collected for the Belfast Bay field; and 3)
characterize the spatial and morphological distribution of pockmarks
in relation to the field's subsurface geology as determined from
concurrently collected CHIRP seismic data, providing results that can
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Fig. 1. Digital depth model (DDM) of study area in Belfast Bay Maine at the head of Penobscot Bay. Depths are in meters below mean lower low water (MLLW). Bathymetry is hill-
shaded at an azimuth of 340° at an elevation angle of 40°. Enclosed area shows examples of the three morphological expressions of pockmarks in Belfast Bay: individual, chains, and
elongated pockmarks (after Hovland et al., 2002). Seismic line in northern part of survey area shows the location of Fig. 2.

serve as a baseline to which other fields worldwide may be compared
quantitatively.

2. Belfast Bay and regional geologic setting

Belfast Bay is a shallow (<70 m) muddy embayment located near
the head of Penobscot Bay in the northwestern Gulf of Maine (Fig. 1).
It has a mean tidal range of 3.1 m and is fed from the northwest and
northeast by the Passagassawakeag and Penobscot Rivers, respec-
tively. The geology of the area is dominated by Paleozoic igneous and
metamorphic rocks (Osberg et al, 1985). Differential erosion of
bedrock shaped the irregular coast and inner shelf regions of Maine
forming numerous estuaries and bays (Kelley, 1987; Barnhardt et al.,
1996).

Seismic-reflection profiles show an acoustic basement that is
typically Paleozoic bedrock or till deposited when late Wisconsinan
glaciers retreated from the Maine coast between 15 and 13 ka
(Belknap et al.,, 1987; Barnhardt et al., 1997; Dorion et al., 2001)
(Fig. 2). Inner shelf stratigraphy reflects changes in local sea level
resulting from the isostatic effects of glaciation (Belknap et al., 1987;
Barnhardt et al., 1995). Retreating glaciers scattered heterogeneous
deposits of till across the present seafloor (Belknap and Shipp, 1991;
Kelley and Belknap, 1991) and a series of moraines stretching across
many coastal embayments, including Belfast Bay (Knebel, 1986; Shipp
et al., 1987; Rogers et al., 2006). Deposited during glacial retreat,
when sea level was 60-m higher than the present coastline, the
glacial-marine (GM) Presumpscot Formation muddy sediment
(Bloom, 1963) covers rock and till seaward of the late Pleistocene
marine limit, and is the most common deposit along the inner shelf of
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Fig. 2. CHRIP seismic line draped over swath bathymetry illustrates representative
pockmark field and Gulf of Maine nearshore stratigraphy. Approximate distance
between east and west extent of image is 1200 m. Holocene mud thickness ranges
between 5 and 10 m. Pockmarks in Belfast Bay do not penetrate below the transgressive
unconformity.

northern New England and the Canadian Maritimes (Kelley et al.,
1998).

By 12.5 ka (calibrated to calendar years with a 400 yr reservoir
correction; Reimer et al., 2009) isostatic uplift of the land had left sea
level approximately 60 m below the present day shoreline (Barnhardt
etal.,, 1995). Sea level has since risen at varying rates (Barnhardt et al.,
1995; Kelley et al., 2010). Between the lowstand and the present
shoreline lies a transgressive surface of erosion, with Holocene mud or
sand overlying glacial sediment (Belknap et al., 1987; Belknap and
Shipp, 1991; Barnhardt et al., 1997). In protected estuaries, such as
Belfast Bay, a sandy-muddy estuarine (E) unit is locally preserved
between GM and Holocene mud (Barnhardt et al., 1997).

Belfast Bay contains the most-studied pockmark field in eastern
North America (Ostericher, 1965; Scanlon and Knebel, 1989; Kelley et
al., 1994; Rogers, 1999; Gontz et al., 2002; Ussler et al., 2003; Rogers et
al., 2006). Ostericher (1965) examined the Bay by seismic-reflection
and identified “channels” in the sediment surface that he interpreted
to be related to scour. Scanlon and Knebel (1989) conducted a
sidescan-sonar survey in a similar part of the Bay and found the
“channels” to be circular and similar to the features that King and
MacLean (1970) discovered on the Scotian Shelf and termed ‘pock-
marks.” Enhanced reflectors and acoustic turbidity in seismic profiles
from additional surveys indicated natural gas in the subsurface
(Schubel, 1974; Scanlon and Knebel, 1989; Kelley et al., 1994; Rogers;
1999); the presence of methane was confirmed in further acoustic and
vibracore work (Barnhardt et al., 1997). A sidescan-sonar survey by
Rogers (1999) and a multibeam bathymetric survey conducted by
NOAA in 1999 indicated that pockmarks dominate the Belfast Bay
seafloor. Rogers (1999) identified approximately 2300 pockmarks
over 32 km? among them some of the world's largest and deepest
nearshore pockmarks (Rogers et al., 2006). Despite these numerous
investigations, fundamental questions about the field's origin and
degree of activity persist (Kelley et al., 1994; Ussler et al., 2003).

3. Data and methods
3.1. Geophysical data acquisition and processing

High-resolution marine geophysical data were acquired in
September 2006 for 25 km? of the seafloor at depths ranging from 7
to 49 m (Fig. 1). Bathymetry, backscatter, and seismic-reflection data
were collected simultaneously along 296 km of survey lines (north-
east-southwest orientation) spaced 100 m apart. Acoustic backscatter
data obtained from towed sidescan-sonar are not used here because

the muddy sediments that cover the seafloor in Belfast Bay are well
described elsewhere (Ussler et al., 2003; Rogers et al., 2006).

Bathymetric data were collected by a Systems Engineering &
Assessment (SEA) SwathPlus Interferometric sonar mounted on the
bow of the 27’ R/V Rafael and operated at a frequency of 234 kHz.
Survey speed was ~5knots (9kmh™!). Precise navigation was
provided by a Real-Time Kinematic Global Positioning System (RTK-
GPS) signal transmitted from a base station established onshore. The
RTK-GPS signal was used to establish the height of the vessel's GPS
antenna relative to mean lower low water (MLLW). Sound-velocity
casts were collected every 2-3 h during the survey to correct for
changes in the speed of sound within the water column.

Raw bathymetric data collected in SwathPlus format were
processed through SEA Swath Processor software and converted to
a SwathPlus processed file. Bathymetric filters were applied to clean
the data, and the sound-velocity profiles, RTK tides, transducer roll,
and antenna offsets were also applied. The filtered processed file was
then imported to Computer Aided Resource Information System
(CARIS) Hydrographic Information Processing System (HIPS) for final
manual line-by-line editing. The bathymetric sonar did not complete-
ly ensonify the bottoms in several of the deeper pockmarks because of
the rapid change in depth. Any “no data” values at the bottom of these
pockmarks were interpolated using a 3 x 3 median filter in CARIS. The
final depth surface was exported from CARIS to Environmental
Systems Research Institute (ESRI) Geographic Information System
(GIS) software ArcGIS to generate a 32-bit floating-point bathymetric
grid of 5x5 m cells — the basis of all subsequent analysis.

Seismic-reflection profile data were collected simultaneously with
the bathymetry by an EdgeTech FSSB 424 system towed approxi-
mately 2 m astern of the R/V Rafael and operating at 4-24 kHz. The
data were acquired in SEG_Y format and processed in SioSeis and
SeismicUnix.

Each seismic profile was interpreted in Landmark Graphics to
delineate both the Pleistocene/Holocene unconformity surface and
the presence of acoustic turbidity and enhanced reflectors interpreted
as gas (Fig. 2). The x, y, and z values of the interpreted horizon were
exported at a spacing of every 20 shot points (approximately 13 m). A
continuous surface, using the Triangulated Integrated Network (TIN)
Model, was then converted to a regular grid (25-m resolution)
showing Holocene thickness.

3.2. Geomorphometric methods

3.2.1. A representation of surface form

The qualitative description and segmentation of landforms (e.g.
hilly, steep, and rough) in terrestrial geomorphology are subjective
and often insufficient for comparative studies (Pike, 1995). A more
robust quantitative approach to empirically describe the shape of the
earth's surface can facilitate the detailed interpretation of individual
landform units and across various landform types (Pike, 1995, 2000;
Pike et al., 2009). The mathematical description of planetary surfaces
and the extraction of surface-form parameters and objects are known
as geomorphometry. This morphological approach adapts to the
seafloor and extraterrestrial surfaces; it combines with the traditional
tools of geomorphology to sharpen the interpretation of naturally
occurring forms anywhere. We find this approach suited for the
analysis and interpretation of seafloor pockmarks.

Although individual pockmarks appear symmetrical and visually
distinct in hill-shaded digital depth models (DDM), their morpholo-
gies can be complex (Fig. 1; Hovland and Judd, 1988). Such
irregularities complicate pockmark delineation based on visual
inspection. Further, pockmark fields may comprise thousands of
features and manual interpretation becomes impractical in addition to
implicitly subjective. Consistent and repeatable delineation of pock-
marks by automated techniques requires a morphologic definition
that includes diagnostic features and distinguishes them from other
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forms. We define a pockmark as a roughly circular seafloor depression
that consists of three elements: 1) the depth to the lowest point
(bottom) of the depression; 2) the depth to the rim; and 3) the
diameter of the rim defined here operationally by the intersection of
pseudo-“watershed boundary” and the nominally flat seafloor. This
rim also marks the locus of greatest change in slope gradient (profile
curvature) at each pockmark (Fig. 3). Most pockmarks in Belfast Bay
and worldwide are sufficiently described by this definition; however,
it does not adequately characterize “elongated pockmarks” which
have irregular highs and lows throughout the depression (Fig. 1;
Hovland et al., 2002). In Belfast Bay these elongated forms occur at the
periphery of the field, and are not the dominant pockmark expression.

3.2.2. Initial approximation of pockmark shape

Differences between 2-D and 3-D descriptions of pockmark form
pose several challenges to their automated extraction. In 2-D,
pockmarks appear as simple symmetrical features (Fig. 3), while in
3-D, pockmark depth, slope, and curvature gradient vary within each
occurrence. Because the distribution of profile curvature varies among
pockmarks of different sizes, we first represent pockmarks as point
features and then attempt to identify geomorphic attribute(s) that
consistently define a perimeter or rim for all pockmarks. This
approach facilitates extraction from the background seafloor even
where pockmarks have elongated rims or exist in chains (Fig. 1).

3.3. Pockmark extraction

We characterize a pockmark as a point feature in a digital depth
model (DDM) by employing standard hydrologic algorithms to
identify the lowest point in the depression. This approach has been
previously used in watershed studies to identify subaerial sinks, or
pits, typically artifacts of DEM generation (Jenson and Domingue,
1988; Gallant and Wilson, 2000), and to subsequently fill them prior
to stream network delineation. Using these algorithms we located the
point in each pockmark (i.e. sink) where, on land, water would collect,
and defined that location as the pockmark bottom. Thus identified, the
bottoms of all pockmarks were populated with additional attributes
including seafloor depth of the center of the rim (z;) and seafloor
depth of the pockmark bottom (z,) (Fig. 4). Three general analytic
steps calculate the two basic quantities defining the geometry of each
pockmark depth (d =|z; —z;|) and diameter (D) (Fig. 4). Each step
represents a different geoprocessing model compiled in ArcGIS (ver.
9.2) Modelbuilder. The 30 geoprocessing steps run from the three
basic models are summarized below (Fig. 5).
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Fig. 3. Plan view of single pockmark color-coded by profile curvature (the rate of
change in slope gradient) draped over hill-shaded bathymetry. Red cells (negative
values) are convex and blue (positive values) cells are concave in the direction of
greatest slope. Curvature calculations are based on the DDM with negative depth
values. Black outline is pockmark perimeter (rim) derived from the intersection of
watershed delineation and slope mask described in Section 3.3.

sea surface

seafloor

d=|z1-z2

Fig. 4. Simplified illustration of an individual pockmark as described in this study. z; is
the seafloor depth in meters below mean lower low water of the center of the rim, z; is
the seafloor depth in meters below mean lower low water of the lowest point in the
bottom. d = the absolute depth difference in meters between z; and z,. D =diameter of
the rim in meters. p is the perimeter of the rim in meters.

3.3.1. Sink identification and extraction

The first step in extracting the pockmark bottom, is calculating a
pseudo flow direction for the entire DDM. Flow direction was derived
for each grid cell by identifying the maximum change in z-value
(MaxSlope) between each center cell and the eight adjacent cells
(Jenson and Domingue, 1988) (Fig. 5, step 1.1; Figs. 6 and 7).

MaxSlope = max(@){rzs :;%A 6, 8

r=5v2 3,57 M

Flow direction is then encoded using integer notation (Fig. 6),
modified after Gallant and Wilson (2000). The coded integer value (1,
2, 4, 8, etc.) is arbitrary and can change depending on the software.
ESRI software starts with 1 as flowing to the east (right), but in other
programs the flow may start in a different cell (Jenson and Domingue,
1988).

We identify the sink as the cell, or number of contiguous cells, that
is lower than its surrounding neighbors and has an undefined flow
direction (Fig. 5 Step 1.2; Fig. 6). This step produces a grid of one or

¢ T 9
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3.3 Spatial join
Rims to points

2.4 Depth values
Extract
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Fig. 5. Generalized flow diagram showing the three central processing routines that
extract the pockmark features and derive dimension attributes.
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Fig. 6. Example of automated pockmark extraction from a digital depth model (DDM).
The center of each 5-m cell in the 3 x 3 matrix is labeled on the bottom of cell by seafloor
depth (negative values), and on the top with the coded integer value calculated using
the flow-direction algorithm. Middle and center top cells flow into each other because
0.05-m depth difference between the two cells exceeds the function precision. As a
result, the two cells were identified as a 5x 10 m sink. The polygon centroid locates the
pockmark bottom (green circle).

more 5-m cells for each pockmark (Fig. 5, step 1.3) representing the
lowest point (or bottom).

For each pockmark the locations identified as sinks were either a
single 5-m cell or two 5x5 cells (i.e. one 5x 10 m) depending on the
slope of the floor. Larger pockmarks can have larger flat bottom areas
covering more than one 5-m cell value. Smaller pockmarks have
smaller flat areas that can be represented by one 5-m cell. The
centroid of the sink cell(s) locates the pockmark bottom (Fig. 5, step
1.3; Figs. 6 and 7) and is extracted as a point feature (Fig. 5, step 1.4;
Fig. 7).

3.3.2. Extracting pockmarks from adjacent seafloor

The second group of processing steps calculates seafloor surface
depth attributes for the point locations of pockmark bottoms (Fig. 5,
step 2.0). The seafloor depth value of the center of the rim (z;) for
each pockmark was extracted from a “flat earth model” built from the
nominally flat seafloor adjacent to each pockmark. We applied a
digital mask of areas with slope <3.42° (mean slope of DDM) to
extract bathymetric data of the “flat” areas surrounding the pock-
marks (Fig. 5, step 2.1). This 5-m bathymetric grid representing only
the flat areas was then converted to points that served as input to a
triangulated irregular network (TIN) as mass points (Fig. 5, step 2.2).

Fig. 7. Single pockmark showing location of the feature's bottom (green circle). Red box
shows the extent of Fig. 6. Depth contour interval is 1 m.

The TIN model connects the depth-point values across the rim of the
pockmark effectively creating a “top” surface for each pockmark and
producing a generalized flat seafloor (Fig. 5, step 2.3) over the survey
area. The depth (pockmark top) of the “flat earth” seafloor (z;) was
appended to the x, y location of the pockmark bottom (z;). The
absolute difference of these two depth values is the overall depth (d)
dimension of the pockmark (Figs. 4 and 5, step 2.4).

3.3.3. Defining pockmark rim

Representing the rim of each pockmark as a discrete isoline posed
the greatest obstacle. Visual observation in 2-D (Fig. 3) and 3-D
(Fig. 4) shows the edge of a pockmark not as a raised rim but rather as
a gradual change in slope and curvature. Variability of these two
attributes within each pockmark, and between pockmarks, precludes
using an absolute value of slope (e.g. 4°) or curvature (e.g. —3.0) to
define the pockmark rim. To solve this problem we relied on the
watershed we employed successfully in the first step to locate the
pockmark rims. The watershed delineation finds all upslope areas that
“flow” into the bottom of the pockmark and delineates this edge as a
polyline. In this study this polyline represents the rim of a pockmark.

The digital “watershed” for each pockmark was calculated from
the flow-direction raster (Fig. 5, step 1.1) along with the pockmark
points (Fig. 5, step 1.2) to identify the contiguous cells (i.e. watershed)
that flow to the bottom of each pockmark. We confined the watershed
analysis to cells with slopes greater than 3.42° using the slope mask
derived in Section 3.2.2. All cells in each watershed are coded with the
same attribute as the pockmark point in the center. All raster cells of
each watershed are converted into one polygon encompassing each
pockmark bottom, and then merged with the pockmark point using a
spatial join (Fig. 5, step 3.3). This last step added the final descriptor,
perimeter (p), required for our analysis. Other studies generally use
rim diameter to describe x, y extent (Yun et al.,, 1999; Rogers et al.,
2006; Wildish et al., 2008). Although most of Belfast Bay's pockmarks
are essentially circular, those at the periphery of the field, adjacent to
till outcrops and generally within thinner sediment deposits, may be
elongated. To facilitate comparison with other studies, we treat
pockmark rims as a uniform circle and calculate diameter along with
perimeter. The number of pockmark bottoms generated in step 1.4 in
Fig. 5 may not equal the number of rims, depending upon quality of
the sonar data in deeper areas. Our study identified 60 more bottoms
than perimeters. This discrepancy reflects the tendency for two
pockmark bottoms to occur within the “watershed” of an elongated
pockmark, or within a poorly imaged pockmark. To control data
quality we manually eliminated the redundant point features.

4. Results
4.1. Model accuracy

The model extracted 1767 (Fig. 8) of the 1844 pockmarks found by
visual inspection of the hill-shaded bathymetry. All pockmarks
delineated using our method were also identified manually, although
model-generated perimeters for some of the shallow elongated
pockmarks were more easily identified than those delineated visually.

We attribute this 77 count discrepancy to: 1) subjectivity implicit
in visual identification of the features, particularly elongated pock-
marks; and 2) missing bottoms for the deepest pockmarks where the
operational limits of our bathymetric sonar were exceeded (Fig. 1).
Pockmarks identified visually but not by our model occurred
predominantly at the periphery of the field, either to the south
where maximum depths were beyond the resolution of our sonars
(and large data gap could not be filled in by interpolation), or to the
east and west where elongated pockmarks, or small pockmarks (<5 m
diameter) with irregular rims are located.
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Fig. 8. Locations of 1767 pockmark bottoms (z,) plotted by depth dimension (d), displayed over gray scale hill-shaded bathymetry.

4.2. Pockmark morphometry

Descriptive measurements for the 1767 pockmarks are summa-
rized in Table 1. Mean pockmark depth (d) over the entire field is
7.6 m, mean perimeter length (p) is 266.5 m, and mean diameter (D)
is 84.8 m. There is a strong correlation (R?> = 0.902) between seafloor
depth (z;) and pockmark depth (d) (Fig. 9), the larger pockmarks
occurring in deeper water. The relation between d and rim diameter
(D) is strong (R*>=0.61; Fig. 10), showing that most are not scale
dependent features.

Pockmarks commonly occur in chains (Hovland et al., 2002) and
the Belfast Bay field is no exception. To further evaluate morphology
we classified each extracted pockmark as a single or chain feature
(Table 2). We define a chain pockmark as two or more pockmarks
sharing a wall, or combined rim. Of the 1767 pockmarks identified,
917 (52%) are single and 850 (48%) are chain features. Over a third of
all pockmarks identified as chains consist of only two features (282),
but the most extensive chain consists of 51 pockmarks (Fig. 11). Chain
pockmarks are twice as broad (D) and deep (d) as single pockmarks:
102 and 10.4 m, compared to 69.1 and 5.17 m respectively. Chain
pockmarks occupy more of the surveyed seafloor than single pock-
marks: 3.68 km? compared to 2.20 km?.

Belfast Bay seafloor slopes range from 0 to 44.8°. Values of 3.24° or
less characterize the background seafloor, while the highest slopes
describe the pockmark walls (Fig. 12). Pockmark sidewalls are
commonly steeper than the proposed angle of repose (20°) for

Table 1
Statistics for ocean depth (z;), depth to pockmark rim (z;), pockmark depth (d),
perimeter (p) and diameter (D) of the 1767 pockmarks.

Parameter Min (m) Max (m) Mean (m) Standard
deviation (m)
Seafloor depth (z,) 10.21 48.73 26.02 6.78
Depth to pockmark 9.50 25.70 18.00 2.59
rim (z;)
Pockmark depth (d) 0.54 25.43 7.60 495
Perimeter (p) 50.00 950.00 266.50 119.70
Diameter (D) 15.90 302.00 84.80 38.10

submarine sedimentary deposits (Booth et al., 1985). Pockmarks
flatten out at the bottom and slope at 0-12°. The rate of change of
slope (profile curvature) ranges from —42.97 (convex at pockmark
rim) to 39.16 (concave at pockmark bottom) (Figs. 3 and 12). Chain
pockmarks are steeper, and of greater curvature than single pock-
marks (Table 3; Fig. 13).

Pockmarks occupy 5.88 km?, or 24%, of the surveyed seafloor.
Subtract the fields' DDM from the “flat” TIN-created DDM in
Section 3.3.2 (Fig. 5, step 2.1) yields the field-wide volume of
pockmarks. Assuming there has been no significant sediment
deposition since pockmark formation, Belfast Bay pockmarks account
for 1.5x 107 m? of displaced volume within the surveyed area. This
amount is less than previous estimations based on modeled pockmark
morphology derived from minimally available fathometer traces
(9.9x10” m® by Kelley et al., 1994; and 2.69x 10’ m*> by Rogers et
al., 2006). Other explanations for the discrepancy include differences
in areal extent between the three studied areas and a geopositioning
error in the first survey (Rogers, 1999).

30

Depth (d) of pockmark in meters

10 15 20 25 30 35 40 45 50 55
Seafloor depth (z,) of pockmark bottom in meters

Fig. 9. Relation between depth of seafloor at bottom (z,) pockmark depth (d) for the
1767 pockmarks. R? = 0.902.


image of Fig.�8
image of Fig.�9

B.D. Andrews et al. /| Geomorphology 124 (2010) 55-64 61

1000 4

Diameter (D) of pockmark in meters

25 30
Depth (d) of pockmark in meters

Fig. 10. Relation between pockmark depth (d) and rim diameter (D) for the 1767
pockmarks. R>=0.6107.

4.3. Relation to subsurface characteristics

The spatial distribution of the 1767 pockmarks within the 25 km?
survey area was investigated for trends in their location using the
average nearest neighbor method. The average Euclidian distance
between each pockmark was compared to a hypothetical random
distribution of their locations within the survey area. The ratio of
observed/expected average distance for the field is 0.97 with a p-value
of 0.017 resulting in a clustered pattern. There is less than 5%
likelihood that the clustered pattern is the result of random chance.
We explain this pattern by relating pockmark morphology and
distribution to subsurface characteristics including Holocene sedi-
ment thickness and the presence of subsurface natural gas. Holocene
deposits range in thickness from 0 to 34 m and are thickest in the
center of the field and in a smaller basin in the southwestern portion
of the field (Fig. 11).

A total of 19.7 km?, or 78%, of the total survey is contained in
Holocene sediment thickness in the 0-11.7 m range. Forty percent of
all pockmarks occur in Holocene deposits less than 11.7 m thick
(Table 4). Pockmarks in this range have a mean relief and diameter of
3.20 and 60.8 m respectively. Because the bottoms of pockmarks
terminate at or above the base of the Holocene unit, pockmark depth
is limited by the thickness of those deposits. Pockmarks in the
relatively thin sediments are smaller and shallower than those in
deeper sediments (Table 4). Pockmarks occupy 1.14 km?, or 6%, of the
field underlain by Holocene sediment thinner than 11.7 m. Nearest
neighbor analysis of pockmark locations reveals that the most
concentrated clustering occurs within this zone of sediment thickness,
particularly at the southern toe of a till deposit in the northeast
quadrant (Fig. 12). The remaining 60% of pockmarks in Holocene
sediment exceeding 11.7 m in thickness occupy 5.6 km?, 22% of the

Table 2
Statistics for ocean depth (z,), depth to pockmark rim (z;), pockmark depth (d),
perimeter (p) and diameter (D) of pockmarks classified as chains or single features.

Min (m) Max (m) Mean (m) SD (m)
Single
Z 10.20 41.70 22.50 4.72
z 9.50 24.40 17.30 1.94
d 0.55 18.80 5.17 3.74
p 50.00 810.00 217.00 100.00
D 15.90 258.00 69.10 31.80
Chain
Z 14.47 48.73 29.90 6.53
z; 12.80 25.80 19.60 2.67
d 1.01 25.40 10.40 4.69
p 90.00 950.00 320.00 115.00
D 28.60 302.00 102.00 36.60

surveyed area. Natural gas underlies these areas (Fig. 12) and
pockmarks dominate 82% (4.6 km?) of the seafloor. In these thicker
Holocene deposits mean pockmark relief and diameter are 10.5 and
100 m respectively.

CHIRP seismic data reveal acoustic turbidity and enhanced
reflectors in 6.1 km? (24%) of the total survey area. Enhanced
reflectors are most often visible at the Pleistocene/Holocene uncon-
formity and in close proximity to till outcrops. Zones rich in gas
bubbles typically occur 5-10 m below the seafloor (Fig. 2) and
generally coincide with sediments thicker than 11.8 m (Fig. 11). All
Holocene sediment deposits thicker than 17 m are underlain by gas,
while gas is absent in areas of minimal Holocene sediment thickness
(0-6.4 m).

5. Discussion
5.1. Model performance and constraints

The results of this study illustrate a successful adaptation of
subaerial methods to the marine environment that should contribute
to further quantitative investigations of the morphology of the
seafloor. We define a pockmark as a specific surface element within
the continuous seafloor, here delimited by high-resolution bathym-
etry and the methodological approach of geomorphometric principles
(Pike, 1995, 2000; Pike et al., 2009). We express a pockmark as a
discrete unit in both two and three-dimensional spaces; its form
provides attributes for object-oriented modeling of the seafloor. The
methods developed here intentionally chose algorithms commonly
available in existing terrain analysis software (see Section 2 in Hengl
and Reuter, 2009) to maximize applicability.

Although our approach delivered robust results for Belfast Bay,
several limitations exist. 1) For simple pockmarks the model identifies
and quantifies two key form elements: a central low point (bottom)
and a rim as defined by watershed flow-direction routines. In many
fields, such as Belfast Bay, these two elements suffice for most
pockmarks. They do not adequately characterize elongated pock-
marks with multiple sinks, highly asymmetric pockmarks or flute-like
features that occur at the seaward terminations of some pockmark
fields (Fader, 1991). Further refining the pockmark definition to
include multiple low points within one rim may be required for some
fields. 2) Our model is somewhat scale dependent in that we are
ignoring the incipient pockmarks smaller than our 5-m resolution. In
addition, operational limitations (depth penetration) of the bathy-
metric sonar yield no data in some of deeper pockmarks in the
southern survey area. The broad spatial scale of our regional approach
(25-50 km?) focuses on larger features that are sufficiently repre-
sented by a 5-m pixel resolution.

5.2. Pockmark morphology

Pockmark forms observed in the Belfast Bay pockmark field and
spatial clustering are common to other fields (Hovland and Judd,
1988; Pilcher and Argent, 2007; Webb et al.,, 2009). Extracted
pockmarks in Belfast Bay have a consistent depth/diameter ratio
across the field (Fig. 10), similar to ratios observed in pockmark fields
in the Scotian Shelf (Fader, 1991) and Inner Oslofjord of Norway
(Webb et al., 2009).

Despite several studies of the relation between pockmarks and
host sediment thickness (Josenhans et al., 1978; Fader, 1991; Rogers
et al., 2006; Webb et al.,, 2009), pockmark morphology does not
necessarily constrain a correlation between pockmark size and host
sediment thickness. Pockmarks in any one field may span a range of
morphologies (Judd and Hovland, 2007). Such heterogeneity compli-
cates size parameterization.

Depth (e.g. relief) and diameter primarily describe pockmark size
(Hovland and Judd, 1988; Judd and Hovland, 2007). In fields, such as
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Fig. 11. Map showing the Holocene sediment thickness and the presence of subsurface gas and till deposits. A long chain of 52 pockmark runs North-South perpendicular to the

steepest gradient in Holocene sediment thickness is located at the center of the map.

Belfast Bay, where pockmarks have a consistent depth/diameter ratio,
either one of these parameters makes a meaningful size statistic for
intra-field comparison. However, these parameters are less useful in
conveying gross pockmark size in fields with a wide range in depth-
to-diameter ratios. In such cases field-wide comparisons require such
parameters as pockmark surface area or volume displacement to
compare pockmarks by size.

In Belfast Bay, pockmarks that deviate from the linear relation
between depth (d) and diameter (D) typically are shallower with

respect to diameter. These anomalies occur mainly on the periphery of
the field, adjacent to till outcrops and in thinner deposits of sediment.
These are some of the broadest in Belfast Bay (p =810 m) but may be
less than 4 m in depth.

Despite the presence of these large shallow depressions, pock-
marks in the thinnest sediment layers are smaller than those in any
other isopach (Table 4). Examination of field-wide seismic-reflection
profile data indicates that pockmarks do not penetrate below the
Pleistocene/Holocene unconformity. Therefore the field's largest
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Fig. 12. Slope gradient map of bathymetry in the survey area showing nominally flat seafloor (<3.24° slope) and steeper pockmark walls with slopes exceeding 3.24°.
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Table 3
Summary statistics for slope and curvature for single and chain pockmarks; all values in
degrees.

Min Max Mean SD

Single pockmark
Slope 1.03 18.20
Curvature —3.10 3.81

8.04 5.12
—0.59 141

Chain pockmark
Slope 1.01
Curvature —3.80

27.00
4.46

11.40 2.40
—0.64 1.58
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Fig. 13. Histogram of maximum slope gradient in degrees for single pockmarks (in
gray) and chain pockmarks (in black).

pockmarks cannot develop in thin Holocene deposits, suggesting that
Holocene sediment thickness controls pockmark size. Josenhans et al.
(1978) and Fader (1991) on the Scotian Shelf and eastern Canadian
continental shelf, respectively, also recognized a positive relation
between pockmark size and sediment thickness.

Although depth to the unconformity limits maximum pockmark
size in Belfast Bay, there are no obvious constraints on the low end of
the size range. Yet, minimum-size statistics indicate that smaller
pockmarks (d<1.61 m, D<28.6 m) do not occur in sediments thicker
than 17.2 m (Table 4). This correlation most likely arises from the
preference of percolating fluids for established conduits (Cathles et al.,
2010). A previous Belfast Bay study suggested pockmark size and
proximity to gas deposits may reflect fluid-migration pathways
(Rogers et al,, 2006). We found that pockmarks underlain by gas
deposits occupied a broader range of pockmark depth than pockmarks
in the thickest sediments (>17.2 m; Table 4). We interpret this
broader size range to indicate that subsurface gas does not control
pockmark size as strong as sediment thickness. While the lateral fluid-

Table 4

migration pathways and consequent origins of peripheral pockmarks
proposed by Rogers et al. (2006) are possible, our results suggest,
along with Fader (1991) that sediment thickness may fundamentally
control both minimum and maximum pockmark sizes. Pockmark size
and coincidence with subsurface gas may not reflect the mode of
pockmark formation.

Pockmarks in Belfast Bay slope in excess of the proposed 20° angle
of repose, for fine-grained marine sediments (Booth et al., 1985).
Although Oslofjord pockmarks also exceed this value, their mean
slope (13°) is lower than the comparable features for Belfast Bay
(Webb et al., 2009). Antecedent geology in the surveyed portion of
Belfast Bay does not control individual pockmark slope. Previous
studies suggested that slopes exceeding the angle of repose were
indications of pockmark activity (Kelley et al., 1994; Webb et al.,
2009). Although episodes of venting fluid may occur in Belfast Bay
(Kelley et al., 1994), none was indicated in any of our data, orin a 1998
geochemical survey conducted by Ussler et al. (2003). Two studies
suggest possible current rotational flow within pockmarks (Manley et
al., 2004; Hammer et al., 2009). From current observations recorded in
Oslofjord, Hammer et al. (2009) developed a numerical model that
depicted upwelling currents within a pockmark. They postulated that
such a current could minimize pockmark infilling; if this type of
activity is occurring in Belfast Bay pockmarks it may, combined with
geotechnical properties of the field, stabilize steeper slopes.

Chains of pockmarks occur throughout the Belfast Bay field, with
the highest frequency in thicker sediments. Hovland et al. (2002),
Rogers et al. (2006), Judd and Hovland (2007), and Pilcher and Argent
(2007) have documented the association of pockmark chains with
subsurface faulting, flexures or zones of weakness related to till
outcrops. Our spatial assessment also finds that the longest chain
(1 km, 51 pockmarks) occurs sub-parallel to a till deposit in the north
(Fig. 11), and that the most abundant clustering of pockmark chains
occurs near the same deposit. However, prominent chains are absent
at other till deposits in the field. We suggest that large pockmark
chains correspond with maximum gradients in Holocene sediment
thickness resulting from the irregular underlying topography. This is
similar to Pinet et al.'s (2008) observation of linear pockmark fields
along the bedrock-controlled scarp in the northwest side of the
Laurentian Channel. Although the exact mechanisms for pockmark
formation in Belfast Bay remain uncertain, field-wide morphology and
chain distribution generally agree with observations in other fields
where fluid escape is invoked in pockmark origins (Judd and Hovland,
2007).

6. Conclusions

We present a method for the extraction of seafloor pockmarks
using the principles within geomorphometry, and established algo-
rithms typically used for hydrologic analysis. This method successfully
identified and extracted the seafloor depth of the top (z;), and bottom
(z2) of each pockmark along with the perimeter (p). In addition, our

Relation of pockmark morphometry to Holocene sediment thickness and the presence of subsurface gas. All sediments >17 m contain subsurface gas. The 41 (out of 1767)
pockmarks (2%) occurring south of our subsurface geophysical data are excluded from these statistics.

Isopach thickness (m) Number Pockmark depth d (m) Pockmark perimeter p (m) Pockmark diameter D (m) Pockmark chains
Pockmarks Min Max Mean  SD Min Max Mean SD Min Max Mean SD # % Chains
in layer

n>5

0-6.4 220 0.64 431 206 062 60.0 810 191 111.0 191 258 60.8 353 37 17 7

6.5-11.7 471 0.55 8.82 373 150 60.0 530 191 692 191 169 608 220 129 27 37

11.8-17.2 365 0.71  13.50 725 220 50.0 740 251 782 159 236 809 249 177 48 77

17.3-23.2 261 185 1620 12,70 3.00 100.00 760 355 1040 312 242 113.0 331 168 64 86

23.3-344 409 161 2540 1350 4.06 90.0 560 372 1170 286 302 1180 372 298 73 19

Pockmarks underlain by gas 417 122 2540 1210 5.03 90.0 950 341 1280 286 302 109.0 407 288 69 168
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method calculated pockmark depth (d) and diameter (D) for the 1767
pockmarks identified within the study area. These empirically derived
dimensions describe pockmark shape and distribution, and provide a
new basis for comparison with other pockmark fields worldwide.

The morphology and non-random distribution of pockmarks in
Belfast Bay are similar to those of other fields, including the
occurrence of chains and a consistent depth-to-diameter relationship.
However, Belfast Bay pockmarks have steeper slopes that exceed the
critical angle for fine-grained sediments. As in other eastern North
American pockmark fields, sediment thickness appears to influence
pockmark size more than the presence of shallow gas.
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