Microbial signatures of protected and impacted Northern Caribbean reefs: changes from Cuba to the Florida Keys

Laura Weber, Patricia González-Díaz, Maickel Armenteros, Víctor M. Ferrer, Fernando Bretos, Erich Bartels, Alyson E. Santoro, Amy Apprill^{*}

*Corresponding author: <u>aapprill@whoi.edu</u>

Supporting Information

- 1. Supporting Methods
- 2. Supporting Tables (S1 2)
- 3. Supporting Figures (S1 S7)

Supporting Methods

Reef surveys

Scuba divers conducted reef surveys at reefs within Jardines de la Reina, Los Canarreos, and the Florida Keys (Supporting Information Table S1). At all Jardines de la Reina and five Los Canarreos reefs, divers estimated the percent cover of dominant reef biotypes (macroalgae, coral, sponge, and sand) by recording the distance (cm) that each biotype directly intersected with the transect tape at each meter over a total distance of 10 m. This distance was then recorded as a percent cover of each biotype at each meter. This was done for 12-20 transects at each site. Coverage of a wider diversity of biotypes including bare rock (covered in sand, turf algae, or crustose coralline algae), clionid sponge, dead coral, fire coral, gorgonian, green zoanthid, live coral, macroalgae, palythoa, rubble/sand, sand, and sponge, was assessed at all FK reefs using the same methods, but by a different research team. In order to compare reef survey data collected in the FK with surveys completed in Cuba, the bare rock (covered with sand, turf algae, or CCA) category was added to the percent cover of macroalgae on each reef to represent the total algal cover. This decision was made because turf algae or CCA usually covers most surfaces on the reef that are not covered with reef organisms and this estimation was used to complete the surveys in Cuba.

Hydrography and sample collection

At each reef location, a YSI EXO Sonde (YSI Inc./Xylem Inc.) was lowered next to the boat and used to collect temperature, salinity, dissolved oxygen, and pH profiles of the water column (Supporting Information Table S1). A custom Matlab (Mathworks®) script was used to extract values from surface (1.5 m) and reef depths (Supporting Information Table S1).

To evaluate planktonic microbial biomass, 1 ml seawater samples from each site and reef depth were collected, transported back to the field laboratory on ice, preserved using 1% PFA (final concentration) for 30 minutes at 4°C, and flash frozen with liquid nitrogen. Unfiltered seawater samples (40 ml) were collected for the measurement of total non-purgeable organic carbon (TOC) and total nitrogen (TN) and these samples were acidified with concentrated phosphoric acid (70 μ l) to remove inorganic carbon. Smaller volume seawater samples (30 ml) were collected and filtered using 0.22 μ m, Sterivex TM filter units for analysis of phosphate (PO₄ ³⁻), nitrite and nitrate (NO₂⁻ + NO₃⁻), silicate (SiO₄⁴⁻), nitrite (NO₂⁻), and ammonium (NH₄⁺) concentrations. Macronutrient samples were transported back to the field laboratory in a cooler on ice and then frozen at -20° C for long- term storage until they could be analyzed.

Fluidigm amplification

DNA extracts were amplified using Fluidigm microfluidic amplification. Before amplification, 2 ng of each DNA extract was combined with 4 µl of PCR mastermix (Roche High Fidelity Fast Start Kit) in a PCR plate. PCR primers were added to a second plate (50 µM each) and diluted with the Fluidigm loading reagent and water. The primers and extracts suspended within the mastermix were loaded into a primed Fluidigm 48.48 Access Array Integrated Fluidic Circuit (IFC) and the IFC was placed within an AX controller. The Fluidigm Biomark HD PCR machine was then used to amplify the DNA extracts (with no imaging). The following amplification steps and cycle numbers were used: 50 °C for 2 minutes (1 cycle); 70 °C for 20 minutes (1 cycle); 95 °C for 15 seconds, 55 °C for 30 seconds, and 72 °C for 1 minute (10 cycles); 95 °C for 15 seconds, 55 °C for 30 seconds, and 72 °C for 1 minute (8 cycles),

95 °C for 15 seconds, 80 °C for 30 seconds, 60 °C for 30 seconds, and 72 °C for 1 minute (2 cycles); 95 °C for 15 seconds, 55 °C for 30 seconds, and 72 °C for 1 minute (8 cycles); and 95 °C for 15 seconds, 80 °C for 30 seconds, 60 °C for 30 seconds, and 72 °C for 1 minute (5 cycles). The total number of cycles in the first amplification process was 38.

After the first amplification, PCR products from each sample were collected and then diluted (1:100) in water. Diluted product (1 μ l) from each sample was amplified using Illumina linkers and barcodes in 20 μ l volume reactions. The PCR reaction conditions included 95 °C for 10 minutes (1 cycle); 95 °C for 15 seconds, 60 °C for 30 seconds, and 72 °C for 1 minute (15 cycles); and an extension step at 72 °C for 3 minutes. The total number of cycles for the second amplification process was 16.

PCR products were harvested from the second amplification and quantified. Amplicon regions and expected sizes were confirmed using a Fragment Analyzer (Advanced Analytics, Ames, IA). After size confirmation, PCR products were pooled into equal ratios. PCR product pools were run on a gel for size selection and the product was gel purified (Qiagen gel extraction kit). A Bioanalyzer (Agilent) was used to inspect the size and profiles of the pooled and purified PCR products.

Metagenomic sequencing

Four samples were chosen from Jardines de la Reina (sites 2, 4, 5, and 6), and five samples were chosen from the Florida Keys (20, 21, 22, 23, 24). Additionally, a DNA extraction control sample was sequenced to account for potential reagent contamination, but was not analyzed.

A modified cetyl-trimethylammonium bromide (CTAB) - phenol: chloroform: isoamyl alcohol extraction was used to extract DNA from half of each 142 mm filter. Cells on the filters

were exposed to a series of physical, enzymatic, and chemical disruptions to enhance cellular lysis by using 3 freeze-thaw cycles, incubating the filters with proteinase-k (20 mg/ml) and lysozyme (20 mg/mL), and vortexing the filters. CTAB, an effective surfactant used for purifying DNA in the presence of polysaccharides (Clarke 2009), was added to the sample, followed by a phenol: chloroform (24:1), phenol: chloroform: isoamyl alcohol (25:24:1), phenol: chloroform (24:1) rinsing series. The aqueous phase was precipitated using molecular grade isopropanol overnight at -20 °C and the DNA pellet was rinsed with 70% ethanol twice before it was eluted into 50 µl of TE buffer (10 mM Tris-Cl, pH 7.5; 1 mM Ethylenediaminetetraacetic acid).

After sequencing, 274,418,737 paired reads were generated with an average read number of 27,441,874 (+/- 9,096,570) paired reads per sample. DNA fragment sizes for the seawater samples ranged from 280-700 bp while the DNA control sample had fragments ranging between 80-600 bp.

column properties.									
Region*	Site #	Depth (m)	Subregion	Reef type	Latitude and Longitude	Temperature (°C)	Salinity (psu)	DO+ (mg/l)	рН
JR	1	10	JR offshore	back reef	20.77453 N, -78.91517 W	S: 26.86	37.3	6.68	8.16
						R: 26.82	37.3	7.03	8.19
JR	2	17	JR offshore	Fore-reef	20.82598 N, -78.97931 W	S: 26.76	37.4	6.45	8.14
						R: 26.74	37.4	6.40	8.14
JR	3	2	JR gulf	lagoon	20.81478 N, -78.88320 W	S: 25.75	38.9	6.78	8.13
						R: 25.73	39.0	7.19	8.14
JR	4	1.5	JR gulf	back reef	20.87765 N, -78.97028 W	S: 24.68	38.9	6.34	8.11
						R: 24.68	38.9	6.34	8.11
JR	5	1.3	JR gulf	back reef	21.09232 N, -78.73354 W	S:24.91	39.7	6.62	8.17
						R: 24.91	39.7	6.62	8.17
JR	6	0.75	JR gulf	back reef	21.10845 N, -78.72080 W	S: 24.12	39.9	7.02	8.19
						R: 24.12	39.9	7.02	8.19
CAN	7	7		deep	21.58422 N, -81.56530 W	S: 29.45	37.43	6.29	8.16
			CAN	fore-reef with wall drop-off		R: 29.35	37.4	6.31	8.16
CAN	8	5	CAN	reef crest	21.58693 N, -81.58308 W	S: 29.73	37.5	5.32	8.10
						R: 29.41	37.48	4.61	8.07
CAN	9	5	CAN	reef crest	21.58802 N, -81.58180 W	S: 28.68	37.37	5.56	8.06
						R: 28.69	37.38	5.50	8.0
CAN	10	15	CAN	deep	21.58158 N, -81.59057 W	S: 27.94	37.36	6.41	8.12
				fore-reef		R: 27.93	37.36	6.39	8.1
CAN	11	4	CAN	reef crest	21.58462 N, -81.59720 W	S: 28.82	37.40	5.54	8.14
						R: 28.83	37.41	5.45	8.14
CAN	12	3	CAN	reef crest	21.58408 N, -81.62805 W	S: 28.82	37.41	5.75	8.14
						R: 28.82	37.41	5.72	8.14
CAN	13	~7	CAN	deep	21.56855 N, -81.63165 W	S: 28.18	37.31	6.04	8.12
				fore-reef		R: 27.63	37.40	5.98	8.14
CAN	14	9	CAN	deep	21.56893 N, -81.63820 W	S: 28.18	37.37	6.08	8.1
				fore-reef		R: 27.85	37.37	6.14	8.1
CAN	15	10	CAN	Fore-	21.55521 N, -81.76323 W	S: 28.07	37.34	6.36	8.14
Cruv				reef, 500m off reef crest		R: 28.08	37.35	6.47	8.19
CAN	16	~1	CAN	back reef	21.56272 N, -81.76676 W	S: 28.03	37.39	6.22	8.12
						R: 27.91	37.36	6.16	8.15

Supporting Table S1: Summary of reef descriptions and surface (S) and reef-depth (R) water column properties.

CAN	17	~1	CAN	back reef	21.60300 N, -81.93300 W	S: 27.23	37.40	5.9	8.10
						R: 27.20	37.41	5.96	8.12
CAN	18	~1	CAN	back reef	21.59684 N, -81.96867 W	S: 26.81	37.38	5.43	5.40
						R: 26.82	37.37	5.40	8.09
CAN	19	10	CAN	mid-	21.71333 N, -82.10417 W	S: 27.62	37.39	6.10	8.12
				depth fore-reef		R: 27.63	37.41	6.03	8.13
FK	20	6	FK offshore	mid-	24.55945 N, -81.50098 W	S: 27.59	37.36	6.33	8.20
				channel patch reef		R: 27.59	37.36	6.34	8.21
FK	21	7	FK offshore	offshore	24.55228 N, -81.43700 W	S: 27.12	37.32	6.58	8.19
				patch reef		R: 27.12	37.32	6.55	8.21
FK	22	6	FK offshore	Spur and	24.54500 N, -81.40600 W	S: 27.35	37.26	6.14	8.16
				groove reef		R: 27.35	37.26	6.11	8.17
FK	23	6	FK offshore	reef flat	24.55228 N, -81.38130 W	S: 27.26	37.22	6.28	8.19
						R: 27.26	37.22	6.28	8.19
FK	24	1	FK nearshore	nearshor e reef	24.60548 N, -81.42930 W	S: 27.98	37.25	6.65	8.23
						R: 27.98	37.25	6.64	8.23
FK	25	1	FK nearshore	nearshor e patch	24.61565 N, -81.39390 W	S: 28.42	37.42	5.11	8.13
				reef		R: 28.42	37.43	5.04	8.14

*JR = Jardines de la Reina, Cuba; CAN = Los Canarreos, Cuba; FK = Florida Keys, USA. + DO = dissolved oxygen

Biotype Category	Average % Cover (S.D.)					
Jardines de la Reina	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6
coral	24.3 (11.8)	30.4 (11.1)	33.6 (13.1)	14.2 (6.9)	55.3 (13.7)	7.0 (5.8)
algae	60.9 (16.4)	44.2 (27.7)	22.0 (9.4)	41 (10.9)	6.4 (8.3)	59.5 (26.2)
sand	2.9 (3.9)	0.6 (1.3)	26.3 (21.0)	39.8 (15.9)	24.0 (12.8)	18.3 (21.4)
sponge	9.7 (6.2)	6.4 (4.9)	13.7 (5.9)	4.1 (2.3)	8.2 (5.3)	1.9 (1.6)
Los Canarreos	Site 13	Site 14	Site 15	Site 17	Site 19	
coral	2.2 (2.3)	1.8 (2.0)	2.4 (3.0)	10.4 (5.1)	10.9 (4.8)	
algae	96.5 (3.4)	97.2 (2.5)	94.3 (4.0)	72.7 (7.9)	65.7 (12.9)	
sand	0.1 (0.02)	0	0.3 (0.7)	13.2 (8.9)	11.8 (6.5)	
sponge	0.9 (1.5)	0.7 (1.6)	1.4 (2.1)	0.9 (1.4)	1.3 (1.2)	
Florida Keys	Site 20	Site 21	Site 22	Site 23	Site 24	Site 25
bare rock (w/ sand,	19.7 (1.6)	33.7 (1.3)	63.6 (1.4)	74.1 (0.6)	41.4 (0.0)	68.7 (1.1)
turf, or CCA)	0		0	0	0	0
clionid sponge	0	0.73 (0.16)	0	0	0	0
dead coral	13.3 (1.1)	5.6 (0.8)	2.1 (0.2)	0.3 (0.1)	6.5 (0.9)	0
fire coral	0.1 (0.0)	0.4 (0.1)	0.6 (0.1)	1.0 (0.1)	0.1 (0.0)	0.4 (0.1)
gorgonian	3.8 (0.3)	3.4 (0.1)	1.8 (0.2)	2.4 (0.1)	1.4 (0.1)	0.5 (0.1)
green zoanthid	0	0	0.2 (0.05)	0	0	0
live coral	30.8 (1.5)	14.5 (0.9)	14.0 (1.2)	2.7 (0.2)	11.6 (0.6)	1.9 (0.3)
macroalgae	0	1.4 (0.1)	3.6 (0.3)	1.7 (0.1)	14.5 (0.7)	26.0 (1.0)
palythoa	0	1.5 (0.2)	11.9 (0.7)	0	0	0
rubble/sand	6.2 (0.5)	8.7 (1.7)	0.5 (0.1)	2.8 (0.4)	7.9 (1.8)	1.2 (0.4)
sand	21.3 (2.0)	19.9 (1.3)	0	2.4 (0.3)	12.0 (2.1)	1.1 (0.2)
sponge	4.9 (0.3)	10.2 (0.3)	1.8 (0.1)	5.3 (0.2)	4.6 (0.5)	0.2 (0.0)
total algae*	19.6 (1.6)	32.3 (1.7)	67.2 (1.5)	75.7 (0.6)	55.9 (3.2)	94.7 (0.6)

Table S2. Average percent cover of dominant reef organisms and substrates at reef sites acrossJardines de la Reina, Los Canarreos, and the Florida Keys.Biotype CategoryAverage %

S.D. = standard deviation

*total algae = average of the sum of macroalgae and bare rock (w/ sand, turf, or CCA) categories

Table S3. Relative abundances (%) and standard deviations of significantly enriched (grey shading) or depleted MED nodes in Jardines de la Reina or Florida Keys reef seawater as revealed by DESeq2.

MED node	Taxonomy	Mean (SD) JR	Mean (SD) FK
MED1988	Verrucomicrobia, Roseibacillus	0	0.30 (0.60)
MED2280	Verrucomicrobia, Opitutales, Puniceicoccaceae,	0.10 (0.12)	1.03 (0.96)
	Coraliomargarita		
MED4771	Marinimicrobia, SAR406 clade	0.11 (0.14)	0.01 (0.02)
MED4772	Marinimicrobia, SAR406 clade	0.090 (0.14)	0.001 (0.006)
MED256	Gammaproteobacteria, Steroidobacterales, Woeseia	0.06 (0.06)	0.0070 (0.016)
MED4049	Gammaproteobacteria, SAR86 clade	0.12 (0.14)	0.013 (0.035)
MED4227	Gammaproteobacteria, Ectothiorhodospirales, uncultured	0.313 (0.440)	0.0036 (0.0091)
MED2377	Gammaproteobacteria, Cellvibrionales, Porticoccaceae, SAR92 clade	0	0.40 (0.53)
MED3751	Gammaproteobacteria, Burkholderiaceae, MWH- UniP1 aquatic group	0.10 (0.12)	0.030 (0.08)
MED1982	Deltaproteobacteria, SAR324 clade, Marine group B	1.09 (0.76)	0.04 (0.05)
MED1255	Cyanobacteria, Synechococcales, Cyanobiaceae, Cyanobium, PCC-06307	0.27 (0.24)	0.02 (0.05)
MED1250	Cyanobacteria, Synechococcales, Cyanobiaceae, Cyanobium, PCC-06307	0.027 (0.33)	0.005 (0.012)
MED1253	Cyanobacteria, Synechococcales, Cyanobiaceae, Cyanobium, CC-9902	0.26 (0.27)	0.04 (0.05)
MED1263	Cyanobacteria, Synechococcales, Cyanobiaceae, Cyanobium, CC-9902	0.07 (0.08)	0.0080 (0.015)
MED50	Cyanobacteria, Synechococcales, Cyanobiaceae, Cyanobium, CC-9902	0.074 (0.14)	0
MED3985	Cyanobacteria, Synechococcales, Cyanobiaceae	0.077 (0.075)	0.01 (0.01)
MED5521	Cyanobacteria, Synechococcales, Cyanobiaceae	0.13 (0.21)	0.0050 (0.013)
MED473	Chloroflexi, Dehalococcoidia, SAR202 clade	0.16 (0.16)	0.0040 (0.11)
MED4353	Bacteroidetes, Sphingobacteriales, unclassified	0.18 (0.34)	0
MED2355	Bacteroidetes, Rhodothermia, Balneola	0.0090 (0.16)	0.72 (0.95)
MED1983	Bacteroidetes, Rhodothermia, Balneola	0	0.29 (0.70)
MED3131	Bacteroidetes, Flavobacteriales, NS5 marine group	0.06 (0.08)	0.004 (0.008)
MED5356	Bacteroidetes, Flavobacteriales, NS5 marine group	0.11 (0.16)	0.0030 (0.012)
MED5331	Bacteroidetes, Flavobacteriales, NS5 marine group	0.19 (0.23)	0.004 (0.0130)
MED3027	Bacteroidetes, Flavobacteriales, NS4 marine group	0.014 (0.021)	0.53 (0.81)
MED5345	Bacteroidetes, Flavobacteriales, NS4 marine group	0.016 (0.019)	0.24 (0.29)
MED3201	Bacteroidetes, Flavobacteriales, Formosa	0.0018 (0.0072)	0.14 (0.23)

MED4473	Bacteroidetes, Flavobacteriales, Crocinitomicaceae, <i>Fluviicola</i>	0.089 (0.14)	0.00071 (0.0032)
MED4535	Bacteroidetes, Cryomorphaceae	0.79 (0.83)	0.018 (0.043)
MED5604	Archaea, Euryarchaeota, Thermoplasmata, Marine Group II	0.11 (0.16)	0.0064 (0.0098)
MED4303	Archaea, Euryarchaeota, Thermoplasmata, Marine Group III	0.11 (0.12)	0.0010 (0.020)
MED3798	Alphaproteobacteria, unclassified	0.045 (0.058)	0.00066 (0.0029)
MED4248	Alphaproteobacteria, SAR11, " <i>Candidatus</i> Pelagibacter"	0.0018 (0.0049)	0.070 (0.13)
MED4268	Alphaproteobacteria, SAR11, " <i>Candidatus</i> Pelagibacter"	0.038 (0.056)	0.0014 (0.0044)
MED4286	Alphaproteobacteria, SAR11, " <i>Candidatus</i> Pelagibacter"	0.14 (0.22)	0.0064 (0.019)
MED4269	Alphaproteobacteria, SAR11, " <i>Candidatus</i> Pelagibacter"	0.14 (0.17)	0.013 (0.023)
MED2282	Alphaproteobacteria, Rhodobacteraceae	0.19 (0.30)	1.90 (2.12)
MED2231	Alphaproteobacteria, Rhodobacteraceae	0.18 (0.23)	0.0078 (0.019)
MED3481	Alphaproteobacteria, Rhizobiales, Rhodobium	0.94 (1.36)	0.0099 (0.024)
MED4087	Alphaproteobacteria, Puniceispirillales, SAR116 clade	0.24 (0.19)	0.29 (0.045)
MED4019	Alphaproteobacteria, Puniceispirillales, SAR116 clade	0.28 (0.34)	0.0082 (0.021)
MED5561	Alphaproteobacteria, Puniceispirillales, SAR116 clade	0.12 (0.13)	0.0014 (0.0042)
MED3678	Alphaproteobacteria, Puniceispirillales, SAR116 clade	0.073 (0.12)	0
MED1028	Actinobacteria, PeM15	0.13 (0.11)	0.0056 (0.0096)

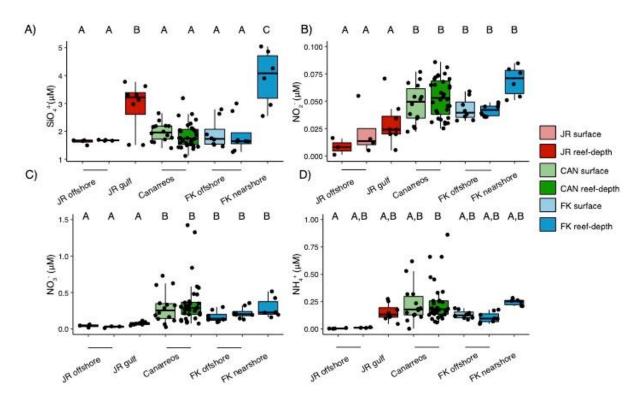


Figure S1. Concentrations of organic and inorganic macronutrients measured by subregion and reef-system. A) SiO_4^{4-} (Silicate) B) NO_2^{-} (nitrite), C), NO_3^{-} (nitrate), D) NH_4^{+} (ammonium). Boxplots are drawn as follows: the lower and upper edges of the boxplot correspond to the first and third quartiles, the whiskers extend to the largest or smallest value at 1.5 times the interquartile, and the black bar across the box represents the median. Boxplots with different letters are significantly different from each other (ANOVA, Tukey's HSD test, p < 0.050). JR = Jardines de la Reina, CAN = Canarreos, FK = Florida Keys. Surface refers to surface seawater.

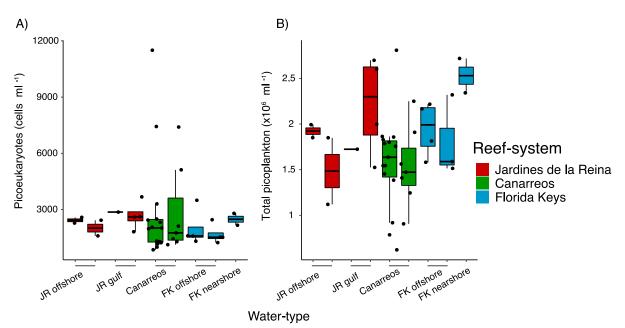


Figure S2. Cell abundances of picoplankton functional groups, including picoeukaryotes (A) and total cells (summation of *Prochlorococcus*, *Synechococcus*, Picoeukaryotes, and unpigmented cells at each depth and subregion) (B). Lower and upper edges of the boxplot correspond to the first and third quartiles, the whiskers extend to the largest or smallest value at 1.5 times the interquartile, and the black bar across the box represents the median. No significant differences were detected (Kruskal-Wallis Rank Sum test and Dunn's test, p < 0.050).

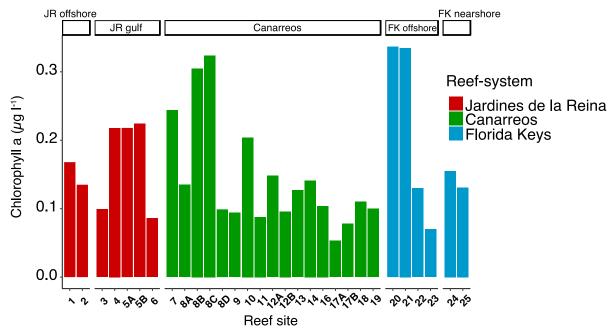


Figure S3. Concentrations of total chlorophyll *a* by subregion and reef-system.

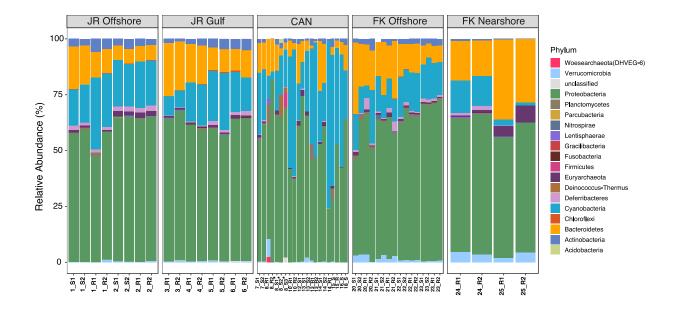


Figure S4. Relative abundance (%) of bacterial and archaeal phyla determined from SSU rRNA gene amplicons. S indicates surface and R indicates reef-depth. Replicate samples are numbered. Samples with * were collected from the same location but on a different day.

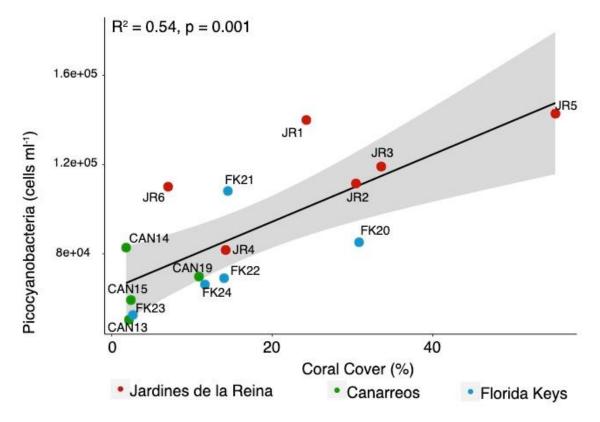


Figure S5. Regression between the abundance of picocyanobacteria (the summation of the abundance of *Prochlorococcus* and *Synechococcus* cells) detected in reef depth seawater and coral cover across the three reef-systems. Each point is labeled with the site name.

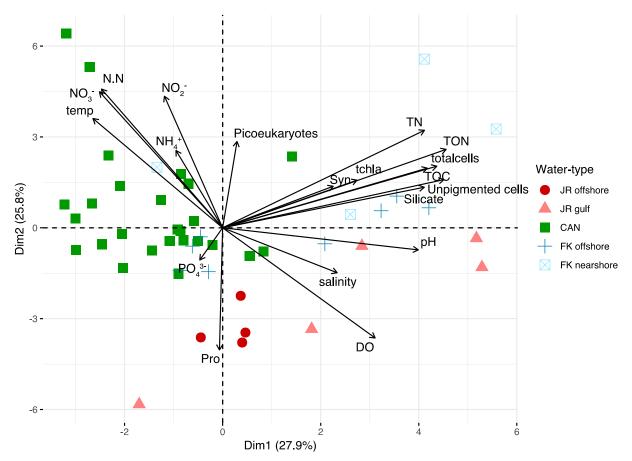


Figure S6. Principal components analysis (PCA) biplot of the physicochemical, biogeochemical, and cell abundance measurements collected across reef-systems. Symbol color and shape reflect subregion. N.N = nitrate + nitrite, Pro = *Prochlorococcus*, Syn = *Synechococcus*, DO = dissolved oxygen, TOC = total organic carbon, TON = total organic nitrogen, TN = total nitrogen, tchla = total chlorophyll *a*, temp. = temperature.

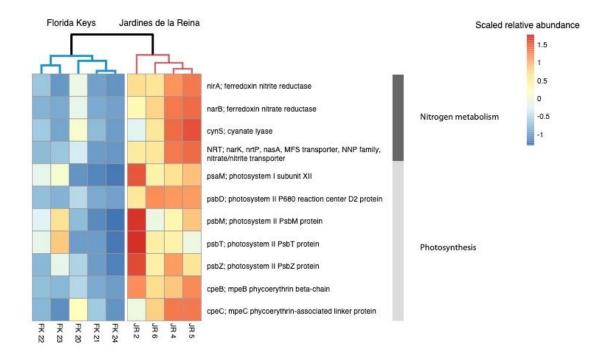


Figure S7. Photosynthesis and nitrogen metabolism genes are enriched in Jardines de la Reina compared to the Florida Keys. The abundances of KEGG orthologs (KOs) were scaled using the 10th and 90th quantiles of the data for visualization. The dendrogram reflects hierarchical clustering of the samples using the 'hclust' function in R.