
1 

 

 

 

 

Ambiguities in the relationship between gonadal steroids and reproduction  

in axolotls (Ambystoma mexicanum) 

Heather L. Eisthen1,2 and Brianne Chung Krause1 

 
 

 

1Department of Zoology, Michigan State University, 203 Natural Science Building, East 

Lansing, MI 48824 
2Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543 

email: eisthen@msu.edu (HLE) and krauseb5@msu.edu (BCK) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: Heather Eisthen 
post:  Department of Zoology, Michigan State University, 203 Natural Science Building, 

 East Lansing, MI 48824 

email:  eisthen@msu.edu  

tel:  517 353 1953 

fax:  517 432 2789 

*Manuscript
Click here to view linked References



2 

Abstract 

Axolotls (Ambystoma mexicanum) are aquatic salamanders that are widely used in 

research. Axolotls have been bred in laboratories for nearly 150 years, yet little is known 

about the basic biology of reproduction in these animals. We investigated the effects of 

changing day length, time of year, and food availability on levels of circulating estradiol 

and androgens in adult female and male axolotls, respectively. In addition, we examined 

the effects of these variables on the mass of ovaries, oviducts, and eggs in females and 

weight, to calculate a form 

of gonadosomatic index (GSI). In both sexes, GSI was not correlated with levels of 

circulating steroids. In female axolotls, estradiol levels were influenced by food 

availability, changes in day length, and season, even when animals were held at a 

constant temperature and day length was decorrelated with calendar date. In addition, 

the mass of ovaries, oviducts, and eggs varied seasonally, peaking in the winter months 

and declining during the summer months, even though our animals were not breeding 

and shedding eggs. In males, levels of androgens appeared to vary independently of 

external conditions, but GSI varied dramatically with changes in day length. These 

results suggest that reproduction in axolotls may vary seasonally, as it does in many 

other ambystomid species, although both male and female axolotls are capable of 

reproducing several times each year. The physiological basis of this ability remains 

enigmatic, given the indications of seasonality contained in our data. 
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1. Introduction 

 

The axolotl (Ambystoma mexicanum) is a paedomorphic salamander: it becomes 

sexually mature while retaining many morphological characteristics of the larval form. 

Axolotls were first brought to Europe in 1863, where they generated much interest for 

their ability to reproduce while resembling aquatic larvae, and then in some cases to 

metamorphose into an animal resembling a common terrestrial salamander, which was 

equally capable of reproducing [50]. Since their introduction to the research community, 

axolotls have become a model organism for biological research, used primarily in studies 

of embryology and regeneration. 

 

The natural history of axolotls is poorly understood. Axolotls are native to two lakes, 

Xochimilco and Chalco, which have been subsumed by present-day Mexico City. Human 

alteration of this habitat for agricultural purposes dates back hundreds of years [7]; their 

environment is now so badly degr

on IUCN Red List. Recent studies indicate that few individuals exist in the wild [e.g., 12], 

and it seems likely that the ecology and natural history of axolotls will never be known. 

 

Given that axolotls have been bred in laboratories for nearly 150 years, it is perhaps 

particularly surprising that their reproductive patterns have not been thoroughly 

documented. Their courtship behaviors [18] and the anatomy of both male and female 

reproductive systems have been described [38, 56], but the physiology of reproduction in 

axolotls has not been explored. In this study, we measured the gonadosomatic index 

(GSI) as well as levels of circulating estradiol and androgens in female and male 

axolotls, respectively. In addition to examining the relationship between GSI and specific 

gonadal steroids, we examined the effects of food availability, photoperiod, and season 

on both GSI and circulating levels of steroids. 

 

2. Materials and Methods  

2.1. Subjects 
 
All subjects were sexually mature, captive-bred axolotls (Ambystoma mexicanum). 

Animals were housed in individual bowls, and none of our subjects were given breeding 
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opportunities during the course of the study. Data presented here were collected from 31 

females and 30 males.  

 

Axolotls were fed commercial salmon chow (Rangen; Buhl, ID) on one of two feeding 

-

deprived for 10 days prior to sacrifice for the study (15 females and 17 

sacrifice (16 females and 13 males). Aside from the terminal period of food deprivation, 

 thus, food availability 

was increased relative to baseline in the high feed group. Animals used as subjects in 

this study were maintained in the low feed condition for 9  600 days (median = 31 days) 

prior to the experiment; animals were maintained in the high feed condition for 7  354 

days (median = 30 days).  

 

were maintained in one of two windowless rooms in which the temperature and light 

cycle were tightly control

timing of light onset and offset in both rooms was digitally controlled, and adjusted daily 

to match sunrise and sunset times in Mexico City. The shortest day for any of these 

animals was 11:05, and the longest was 13:20. The remaining animals were maintained 

in a room in which the windows were blocked with foil, and the day length was controlled 

using an analog timer that was adjusted monthly to approximate summer conditions in 

Mexico City; days for these animals were 13:00 or 13:15. 

 

All procedures were carried out in accordance with US Public Health Service 

regulations, under the guidance of the Institutional Care and Use Committees of the 

Marine Biological Laboratory and Michigan State University. 

 

2.2. Data collection 
 

Prior to blood collection and dissection, each animal was deeply anesthetized with pH-

corrected 0.1% tricaine methanesulfonate (MS222; Sigma, St. Louis, MO). The chest 

was surgically opened, and a 25-g needle inserted directly into the aorta to collect 100  
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1000 µl blood from each animal. Whole blood was stored on ice in a Vacutainer (Becton-

Dickinson, Franklin Lakes, NJ) for 5-15 min before being centrifuged at 4°C for 15 min. 

The plasma was then removed and stored in microcentrifuge tubes at -80°C until 

processing. 

 

Each animal was weighed prior to blood collection and dissection. After blood collection, 

the animal was decapitated. For males, the testes were dissected out and weighed; for 

females, the ovaries and oviducts as well as the eggs ovulated into the coelomic cavity 

were dissected out and weighed. For ease of expression, we refer to the results of these 

measures as the gonadosomatic index (GSI), even though the mass used for females 

includes more than simply gonads. 

 

2.3. Hormone Assays 
 

Levels of sex steroids in circulating plasma were quantified using testosterone and 

estradiol enzyme immunoassay (EIA) kits from Cayman Chemical (Ann Arbor, MI). 

curves were generated using serial dilutions of estradiol and testosterone that were 

supplied with the kits, and were run in duplicate for all samples. According to information 

supplied with the kits, the anti-17 -estradiol antiserum cross-reacts somewhat with 

estrone, estradiol-3-glucuronide, and estradiol-17-glucuronide in competitive binding 

assays. Similarly, the anti-testosterone antiserum cross-reacts with - -

dihydrotestosterone (DHT), and to a lesser extent with androstenedione and 11-

ketotestosterone. In both kits, the cross-reactivity of other steroids is less than 1%. For 

 

 

Estradiol was extracted from plasma four times using dichloromethane, and testosterone 

was extracted three times using diethyl ether. Samples were quickly dried under a 

vacuum at room temperature and reconstituted using EIA buffer supplied with the kits. 

Samples from females were assayed for estradiol in triplicate using one or two dilutions 

ranging from 1:10 to 1:45. Samples from males were assayed for androgens using eight 

dilutions spanning a range from 1:10 to 1:250. After incubation, all plates were read at 

an absorbance of 415 nm. 
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2.4. Data Analysis 
 

For both estradiol and androgen assays, controls included assaying plasma from the 

same animal on separate plates or more than once on a single plate. As an additional 

control, in some cases plasma from a given tube was extracted twice separately and the 

samples run on the same plate. Results obtained from repeated samples from the same 

animal generally fell within 20% of each other, as indicated in the kit specifications. 

 

For all assays, results were excluded if the ratio of the percent of steroid bound to the 

maximum bound (%B/B0) fell on the ends of the standard curve, that is, at a value of less 

than 20% or more than 80%. In addition, in androgen assays in which eight dilutions 

were used, values falling more than one standard deviation from the mean were 

excluded. Finally, for all assays, samples for which the coefficient of variation (standard 

deviation / mean) of the calculated quantity of estradiol or androgens was greater than 

20% were excluded from the analysis. The 3-10 remaining values for each individual 

were averaged to obtain a single value used in the analyses presented here. 

 

Gonadosomatic index was calculated as the ratio mass of the gonads to the mass of the 

body, with the gonads subtracted from the body mass. In females, oviduct and egg mass 

was included in the gonad mass. Statistical analyses were carried out using JMP 5.0 

(SAS Institute; Cary, NC). 

 

3. Results 

3.1. Correlation between levels of sex steroids and GSI 
 

The detection limit for the estradiol EIA kit is 20 pg/ml, and that for the testosterone kit is 

6 pg/ml. All levels that we measured were substantially above these limits. Estradiol 

levels in female subjects ranged from 0.2 to 2.6 ng/ml, with a median level of 0.6 ng/ml; 

the mean (± SEM) estradiol level was 0.85 ± 0.11 ng/ml. Levels of androgens in males 

were somewhat higher, ranging from 0.5 to 7.2 ng/ml; the median value was 2.1 ng/ml, 

and the mean (± SEM) was 2.52 ± 0.29 ng/ml. 
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We also calculated the GSI for each individual. For females, GSIs ranged from 0.6 to 

10%, with a median value of 6.0%. The mean (± SEM) GSI value for females was 5.8 ± 

0.4%. GSIs for males were more homogeneous than for females, ranging from 0.9 to 

2.1% with a median value of 1.5%. The mean (± SEM) GSI for males was 1.5 ± 0.1%. 

 

The hormone levels that we measured do not correlate well with GSI for either female or 

male axolotls (Figure 1). Specifically, R2 = 0.005 for the correlation between estradiol 

and GSI in females (p = 0.70), and R2 = 0.002 for the correlation between androgens 

and GSI in males (p = 0.81). Further, we examined the possibility that levels of sex 

steroids might covary with either body or gonad mass, independent of their ratios. They 

do not. Specifically, the females included in this study ranged in body mass from 40 to 

129 g (median = 67 g); the mass of their ovarian tissue and eggs ranged from 0.3 to 9.5 
2 = 

0.004; p = 0.73) or gonad/oviduct/egg mass (R2 = 0.004; p = 0.74). The body mass of 

males ranged between 46 and 114 g (median = 63 g), and their gonadal mass ranged 

mass (R2 = 0.0005; p = 0.91) or gonad mass (R2 = 0.002; p = 0.80). 

 

3.2. Analysis of female data 
 

Either estradiol levels or GSI, or both, might be affected by the feeding regimes that our 

animals were exposed to, by changes in the duration of daylight, by the actual time of 

year (regardless of photoperiod), or some combination of these factors. In all such 

analyses reported here, change in day length was calculated over the two weeks prior to 

blood collection and the date the animal was sampled was represented by the month 

alone.  

 

Stepwise multiple regression analysis of the effects on estradiol levels of feeding regime, 

change in photoperiod, and month indicates that feeding regime significantly affects 

estradiol levels (R2 = 0.18, p = 0.02). As illustrated in Figure 2A, estradiol levels were 

significantly higher in animals in the high-feed condition than in the low-feed condition 

(Tukey HSD test, p < 0.05). Change in photoperiod and month do not, alone, 

significantly affect estradiol levels: change in photoperiod, R2 = 0.08, p = 0.13; month, R2 
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= 0.02, p = 0.38. Estradiol levels in relation to changes in day length and to calendar 

month are illustrated in Figures 2B and C, respectively. 

 

Multiple regression analysis revealed that all potential two-factor models account for 

between 21 and 27% of the variance. A model that incorporates both feeding regime and 

change in photoperiod produces results (R2 = 0.27, p = 0.04) that are indistinguishable 

from model that includes feeding regime and month (R2 = 0.26, p = 0.04). On the other 

hand, a model that includes only change in photoperiod and month does not explain the 

data quite as well (R2 = 0.21, p = 0.09). Finally, a model that incorporates all three 

variables accounts for 43% of the variance (p = 0.04). 

 

In contrast, similar analyses examining the effects of feeding regime, change in 

photoperiod, and month on GSI yielded no statistically significant results. The strongest 

single factor was change in photoperiod, but it accounts for little of the variance (R2 = 

0.006, p = 0.68). Two-factor models did not perform well, producing R2 values that 

ranged from 0.005 to 0.02, with p values between 0.91 and 0.99. A model that included 

all three variables also performed poorly (R2 = 0.06, p = 0.98). 

 

across the year (R2 = 0.17, p = 0.07); this relationship is illustrated in Figure 3A. 

Nevertheless, gonad/oviduct/egg mass is not correlated with estradiol levels (R2 = 0.004, 

p = 0.73), and adding this mass into the multiple regression model along with change in 

photoperiod, month, and feeding regime, reduced the ability of each model to predict 

estradiol levels. Thus, it appears that mass of gonads, oviducts, and eggs varies 

independently of estradiol. 

 

Although we were concerned that feeding regime might directly affect either body mass 

or gonad/oviduct/egg mass, neither differed significantly between females in the high-

feed and low-feed conditions (t(29) = 1.66, p = 0.15, and t(29) = 1.23, p = 0.23, 

respectively).  

 

3.3. Analysis of male data 
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Data from male axolotls were analyzed as described above for females. Unlike the 

results obtained with female data, stepwise multiple regression analysis revealed no 

statistically significant effects on androgen levels in male axolotls. As with females, 

feeding regime was the strongest single factor, but did not explain much of the variance 

(R2 = 0.04, p = 0.25). None of the three possible two-factor models produced statistically 

significant results, with R2 values ranging between 0.08 and 0.11 and p values between 

0.40 and 0.56. The three-factor model explained only 23% of the variance in the data (p 

= 0.49).  

 

In contrast to the results obtained for females, analyses using GSI as the dependent 

variable produced statistically significant results, illustrated in Figure 4. Notably, change 

in photoperiod had a dramatic effect on GSI (R2 = 0.25, p = 0.005), with GSI decreasing 

as days grew shorter and increasing as days grew longer over the two-week interval 

prior to blood collection (Fig. 4A). This effect is specific to change in photoperiod, as the 

correlation between the length of daylight and GSI is not statistically significant  (R2 = 

0.07, p = 0.29). Neither feeding condition nor month alone significantly affected GSI (R2 

= 0.05, p = 0.24 and R2 = 0.02, p = 0.44; Figs. 4B and C respectively). Nevertheless, 

two-factor models that included change in photoperiod produced statistically significant 

results: a model that combined change in photoperiod with month explained 30% of the 

variance (p = 0.03) and one that combined change in photoperiod with feeding condition 

explained 26% of the variance (p = 0.05). A model that combines month and feeding 

condition did not perform well (R2 = 0.12, p = 0.34). Finally, a model that combines all 

three variables does not produce statistically significant results (R2 = 0.33, p = 0.24).  

 

Among males, gonad mass did not vary across the year (Fig. 3B; R2 = 0.06, p = 0.45); 

gonad mass also did not vary with androgen level (R2 = 0.002, p = 0.80). As we found 

0.53) or gonad mass (t(27) = 0.39, p = 0.70).  

 

4. Discussion 

4.1. Levels of sex steroids in axolotls and other salamanders 
 

The levels of circulating sex steroids that we measured in axolotls fall within the range of  
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values reported for other salamanders. The highest levels of circulating estradiol 

reported for any female salamander occur in the Japanese black salamander Hynobius 
nigrescens, ranging from 2 to 22 ng/ml [25]. In female mudpuppies, Necturus 
maculosus, estradiol levels range between 0.6 - 6.4 ng/ml [5]. In female Ocoee 

salamanders, Desmognathus ocoee, serum levels of estradiol are approximately 3  6 

ng/ml [64]. Finally, estradiol levels have been measured in females of two species of 

salamandrids, and fall in a similar range: 0.8  4.7 ng/ml in Pyrenean brook 

salamanders, Calotriton (formerly Euproctus) asper, [11] and 0.8  3.1 ng/ml in the 

sharp-ribbed salamander, Pleurodeles waltl [16]. 

 

In our study, we found that estradiol levels in female axolotls ranged between 0.2 and 

2.6 ng/ml, with a mean of 0.9 ng/ml. Interestingly, Katsu and colleagues [31] have cloned 

the ER  and ER  receptors from axolotls and report that the half-activation for 

heterologously expressed receptors is about 2.7 pg/ml for ER  and 0.7 ng/ml for ER . 

Thus, the EC50 for ER  is approximately 100-fold lower than the lowest levels of 

circulating estradiol that we measured, whereas that for ER  is within the range of 

circulating estradiol levels. 

 

In male axolotls, we found that circulating androgen levels range from 0.5 to 7.2 ng/ml, 

with a mean of 2.5 ng/ml. These levels are somewhat higher than those described for 

axolotls by Jacobs and Kühn [30], who report baseline levels of serum testosterone 

around 0.2 ng/ml, which were elevated to as much as 0.8 ng/ml following injection of 

GnRH. The source of the discrepancy is not clear. The specificity of the method used by 

Jacobs and Kühn is not described, raising the possibility that the levels we measured are 

higher due to the cross-reactivity of our antibody with DHT, although the cross-reactivity 

is not high (approximately 27% in competitive binding assays) and serum levels of DHT 

are generally lower than those of testosterone in salamanders. The animals in the two 

studies were of similar sizes (Jacobs and Kühn report that the mean body mass of their 

animals was 64 g; the mean for our animals was 63 g) and were maintained at similar 

temperatures, but many other variables, including the type of food used and the genetic 

backgrounds of the animals, may have contributed to differences among the two groups.  

 

Levels of serum androgens have been reported in males of three other species of 

ambystomid salamanders, and exceed the values we obtained for axolotls. Specifically, 
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Norris et al. [42] quantified androgens (T + DHT) in neotenic tiger salamanders, 

Ambystoma tigrinum, which range between 0.6 and 39.0 ng/ml. In the spotted 

salamander, A. maculatum, androgen levels range from 2 to 16.7 ng/ml [13], and values 

in marbled salamanders, A. opacum, range from 5.2 to 116.7 ng/ml [27]. 

 

Testosterone or androgen levels in other families of salamanders are as high or higher 

than those reported in ambystomids. In male Necturus maculosus, circulating 

testosterone ranges from 4 to 202 ng/ml [5], and in male plethodontid salamanders 

range from 5 to 439 ng/ml in redback salamanders, Plethodon cinereus [10], to 

approximately 200  350 ng/ml in male Desmognathus ocoee [64]. Estradiol levels in 

female Hynobius nigrescens are high, and so are androgen levels in males: 60 - 844 

ng/ml [25]. Finally, in salamandrids, testosterone levels in male Salamandra salamandra 

range between 25 and 85 ng/ml [34]; androgen levels in male Calotriton asper range 

from 1.7 to 9.8 ng/ml [11] and in Pleurodeles waltl range from 5.2 to 37 ng/ml [17].  

 

Interspecific differences in levels of circulating androgens appear to be greater among 

male salamanders than are levels of circulating estradiol among female salamanders. 

The basis of this variability is unknown, but a recent analysis suggests that levels of 

circulating androgens in male reptiles and amphibians increase with latitude [40], much 

as levels of androgens in birds increase with distance from the equator [19]. Axolotls 

generally fit this pattern, with the lower levels of circulating androgens than have been 

found in ambystomids obtained from more northern locations.   

 

4.2. Androgens, estradiol, and reproduction in salamanders 
 
Our results indicate that food availability, change in day length, and season all influence 

estradiol levels in female axolotls; in contrast, none of these variables influences 

androgen levels in male axolotls. Interpreting the significance of these effects is 

complicated by a lack of available information concerning relationship between gonadal 

steroids and reproductive behavior or gametogenesis in axolotls. Nevertheless, some 

data are available for other salamanders, including a few ambystomid species, and we 

will briefly review the relevant literature here to provide context for our results. 
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Few studies directly address the role of gonadal steroids in facilitating or inducing 

reproductive behavior in salamanders by manipulating steroid levels. Nevertheless, data 

from members of the family Salamandridae suggest that androgens may be generally 

necessary but not sufficient for induction of courtship behavior in males. For example, in 

the newt Taricha granulosa, male courtship clasping (amplexus) depends on circulating 

androgens, but hormones and other factors, like vasopressin, corticosterone, and GABA, 

are involved in releasing or suppressing clasping behavior. Similarly, androgens are 

required for male courtship displays in two species of newts that do not engage in 

amplexus, Cynops pyrrhogaster and Triturus carnifex, but prolactin may serve as the 

more immediate trigger for courtship behavior [reviewed in 39]. Androgens have also 

been shown to be necessary for expression of courtship behavior in the plethodontid 

salamander Desmognathus ochrophaeus [4]. Curiously, in the congener D. ocoee, 

handling stress suppresses testosterone but does not alter male courtship behavior, 

suggesting either that testosterone is not necessary for courtship in this species or that 

the stressor did not alter testosterone levels enough to produce a behavioral effect [64].  

 

Additional studies provide correlational data concerning the role of androgens in male 

courtship behavior by indicating whether the timing of peaks in androgen levels 

coincides with peaks in breeding activity. Given the data described above, it is 

reassuring that androgen levels have been shown to peak during the breeding season in 

the salamandrids Cynops pyrrhogaster and Triturus carnifex [53, 65]. Similar results 

have been obtained for the salamandrids Calotriton asper, Taricha granulosa, and 

Salamandra salamandra, which is unusual in having a fall breeding season, and 

Pleurodeles waltl, which has two breeding seasons [8, 11, 16, 34, 51]. Within the family 

Plethodontidae, similar relationships are seen: plasma androgen or testosterone levels 

are highest during the breeding season in male redback salamanders, Plethodon 
cinereus [10], as well as in two species with uncommon breeding patterns, 

Desmognathus ochrophaeus, which breeds twice year, and Plethodon jordani, which 

breeds in the fall [62]. Circulating levels of androgens also peak during the spring 

breeding season in Hynobius nigrescens [25].  

 

The closest relatives of axolotls are tiger salamanders, A. tigrinum [48, 49]. In a neotenic 

population of tiger salamanders in Colorado, androgen levels are moderate during the 

spring breeding season (4 ng/ml) and decline in June (0.6 ng/ml) before peaking in the 
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fall (38 ng/ml) [42]. Although the highest levels of androgen do not occur during the 

breeding season, the levels measured during the spring are similar to those that we 

measured in axolotls and may be sufficient to support reproductive behavior. Houck [27] 

found that androgen levels do not differ between male marbled salamanders (A. 
opacum) that were given the opportunity to court females and those that were not. 

Nevertheless, given that all individuals were examined during the breeding season and 

were collected during the spring migration to breeding ponds, this study does not rule 

out the possibility that androgens are required for courtship behavior in male A. opacum. 

Bolaffi and Callard [5] report no seasonal variation in plasma steroid levels in male 

mudpuppies, Necturus maculosus, although this result is difficult to interpret because the 

animals used in the study were kept in the laboratory for up to five weeks and some at 

temperatures much lower than they would normally experience during the breeding 

season. In summary, although the data concerning the relationship between circulating 

androgens and reproductive behavior are ambiguous for ambystomatid and proteid 

salamanders, androgens peak during the breeding season, and may be necessary for 

expression of courtship behavior, in salamandrids, plethodontids, and hynobiids. 

 

The role of hormones in courtship and mating behavior in female salamanders has been 

the subject of very few studies [63]. In the salamandrid Taricha granulosa, courtship 

behavior leads to elevated circulating estradiol levels [44]. In two other salamandrids, 

Pleurodeles waltl and Triturus carnifex, both estradiol and androgen levels peak in 

females during the annual breeding period [8, 17, 65], but estradiol levels peak 

somewhat after the breeding season in Calotriton asper [11]. In the plethodontid 

salamander Desmognathus ocoee, handling stress elevates plasma estradiol, but does 

not alter courtship behavior in females [64]. Circulating steroid levels in female Necturus 
maculosus have been reported to lack seasonality [5], but, as mentioned above, the 

conditions in which the animals were kept weakens this conclusion. On the other hand, 

in female Hynobius nigrescens estradiol levels are low throughout the spring breeding 

season [25]. Thus, estradiol may be related to courtship behavior in some salamander 

taxa, but not in others. Overall, the direction of causality in the relationship between 

elevated estradiol levels and courtship behavior is not clear, and no study has 

addressed the possibility that moderate levels of estradiol may be necessary for 

courtship behaviors to occur.  
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In addition to courtship and mating behavior, androgens and estradiol may also be 

involved in gametogenesis. In salamanders with a spring breeding season, males often 

use sperm that were produced during the previous fall and stored in the vas deferens 

over the winter [35]. The process of spermatogenesis in salamanders has recently been 

reviewed by Propper [43]. Briefly, spermatogenesis occurs sequentially in different 

zones of the testis, such that posterior regions contain more mature sperm and the least-

developed sperm are found most anteriorly. Development of Leydig cells follows the 

posterior-anterior gradient of spermatogenesis, and tends to lag behind sperm 

development; thus, androgens are not secreted from local cells during at least the early 

stages of spermatogenesis. The period of spermatogenesis can be lengthy, but in most 

species ends at spermiation, when the mature sperm move into the vas deferens. The 

emptied testicular lobules then differentiate into glandular tissue that secretes androgens 

and estradiol into the circulatory system. This basic pattern holds in the salamandrid 

Paramesotriton hongkongensis as well as in the proteid Necturus maculosus [35, 45].  

 

The timing of major stages of spermatogenesis and their relationship to circulating 

androgen levels have been studied in a number of species. In salamandrids, androgen 

levels are lowest at the beginning of spermatogenesis, increase during the period of 

spermatogenesis, and peak around the time of spermiation [Calitriton asper, 11, 

Pleurodeles waltl, 16, Taricha granulosa, 51]. A similar pattern has been described in the 

Plethodon jordani [62]. In Hynobius negrescens, spermatogenesis is synchronized 

throughout the testis and spermiation occurs in the spring when males enter breeding 

ponds, rather than in the fall as in many other Northern temperate salamanders. 

Nevertheless, androgen levels are still low when spermatogenesis begins and peak at 

the time of spermiation [24, 25]. In the neotenic ambystomids A. tigrinum and A. 
dumerilii, as well as in the plethodontid Desmognathus ochrophaeus, spermatogenesis 

begins at the end of the breeding season, when androgen levels are moderate; 

androgen levels then fall before rising to a peak at the time of spermiation [42, 55, 62]. 

Thus, it seems that in salamanders androgens may not be required for the initiation of 

spermatogenesis, and androgen levels tend to peak at spermiation. Lazard [33] studied 

the activity of two enzymes involved in androgen production in the testes of axolotls, and 

found that, as expected, their activity in Leydig cells peaked around the time of 

spermiation; however, their activity in Sertoli cells peaked while spermatogonia were 
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dividing, suggesting that androgen levels may not be minimal at the beginning of 

spermatogenesis in axolotls. 

 

The role of gonadal steroids in oogenesis has not been the subject of detailed study in 

ovariparous salamanders, but is presumed to follow the pattern established in frogs in 

which estradiol levels are generally low at the beginning of oogenesis and gradually 

increase until the time of ovulation [54]. Estradiol causes the release of vitellogenin, and 

is therefore necessary for deposition of yolk in eggs [54]. Estradiol is also necessary, but 

not sufficient, to stimulate production of the jelly coat in oviducts of female Cynops [29]. 

Oviducts elongate and their walls become thicker during the breeding season in A. 
tigrinum, and both estradiol and testosterone are required for these changes to occur; 

the two hormones are also required for sensitizing oviducts to hypophyseal hormones 

that stimulate the smooth muscle contractions involved in oviposition [21]. Thus, the 

involvement of estradiol in female gametogenesis seems to begin with yolk deposition 

and continue through egg laying. 

 

Correlational studies of reproductive anatomy and circulating estradiol levels support this 

general scenario. In the salamandrids Calitriton asper and Pleurodeles waltl, estradiol 

levels are low in the summer, after the breeding season, and increase through the fall 

until the time of vitellogenesis [11, 17]. In Pleurodeles waltl and Triturus carnifex, the 

ovaries and oviducts increase in mass during the fall, as circulating estradiol levels are 

rising [17, 65]. In Hynobius nigrescens, which is unusual in having external fertilization, 

estradiol levels are low during the spring breeding season and rise in the fall [25]. This 

fall increase in estradiol levels coincides with growth of the ovaries, oviducts, ovisacs, 

and cloacal glands [23]. 

 

4.3. External factors influencing reproduction in female axolotls 
 

Estradiol levels in female axolotls are more clearly related to food availability than to any 

other variable (Fig. 2A). Why should estradiol levels increase in well-fed females? As 

described above, estradiol levels are frequently elevated during the breeding season, 

but reproductive behavior does not appear to require dramatic expenditures of energy. 

On the other hand, estradiol levels are also frequently associated with an increase in the 

mass of ovaries and oviducts and the production of vitellogenin, which are energetically 
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expensive events [54]. In A. opacum, females with greater access to food are more likely 

to be reproductive, have larger clutch sizes, produce larger eggs, and invest their eggs 

with more lipids than do females given moderate or low access to food [47]. Studies of 

female plethodontids (Hemidactylium scutatum) indicate that those that skip a breeding 

season gain more body mass than those that reproduce, but that females provisioned 

with extra food are less likely to skip a breeding season [22]. Reproduction is expensive 

for female axolotls, which typically lay 175 - 200 eggs in a single clutch, and can lay up 

to 400 eggs at a time [20]. Thus, we surmise that estradiol levels increase in well-fed 

females because food availability is a key factor limiting reproduction in female 

salamanders. 

 

Our data also suggest that estradiol levels in female axolotls may increase with 

increasing day length (Fig. 2B). Given day length increases through the winter and 

spring in the Northern hemisphere, this result may indicate that estradiol levels increase 

during a spring breeding period, perhaps in association with reproductive behavior, in 

axolotls. We also find peaks in estradiol levels in January and October, regardless of day 

length (Fig. 2C). Given that photoperiod was decorrelated with calendar date and all 

animals were maintained at constant temperatures we are at a loss to explain this 

apparent seasonality in estradiol levels, but seasonal differences in breeding success 

have been repeatedly reported in axolotl colonies. Despite keeping the animals at a 

constant temperature and unchanging day length, the probability of obtaining successful 

spawns peaked from January through May and decreased dramatically during the 

summer months in axolotl colonies at Indiana University [37], the University of Kentucky 

(Laura Muzinic, pers. comm.), and the University of Ottawa [3]. In addition, one source 

asserts that although absolute day length does not affect reproductive success in 

axolotls, an increase in day length over a 2-3 week period enhances the probability of 

obtaining spawns [3], suggesting that changing day length may alter hormonal activity in 

axolotls. Some species of salamanders show two peaks in estradiol levels, one during 

the spring breeding season and a second in the fall, associated with vitellogenesis and 

ovulation [Pleurodeles waltl, 17, Hynobius nigrescens, 23, 25], and the same may occur 

in axolotls.   
 

summer and peaks in the winter (Fig. 3A), corroborating a previous anecdotal report that 
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the gonads in axolotls tend to regress during the summer [37]. A similar decline has 

been described in salamandrids and hynobiids [17, 23, 65]. Nevertheless, we found no 

correlation between circulating estradiol levels and the combined mass of ovaries, 

oviducts, and eggs (Fig. 1A), a result unlike those described in the salamandrid Triturus 
carnifex [65] and in Hynobius nigrescens [23, 25]. Either the relationship is different in 

axolotls or ambystomids than in other salamanders, or perhaps a more detailed analysis 

that separated the masses of the ovaries, oviducts, and eggs would reveal a relationship 

that was obscured by our methods. 

 

4.4. External factors influencing reproduction in male axolotls 
 

In contrast to our results with females, we found no relationship between androgen 

levels and food availability, change in photoperiod, or time of year in male axolotls. 

Although severely malnourished male salamanders may not reproduce in the wild, all 

our animals were sufficiently well fed that a lack of effect of feeding regime is not 

surprising. However, the absence of changes in androgen levels with either time of year 

or change in photoperiod is surprising given that seasonal differences in androgen levels 

have been reported in many male salamanders, including A. maculatum and neotenic A. 
tigrinum [13, 42]. It seems possible that decorrelating change in day length from time of 

year confounded the two variables, obscuring differences, although both variables 

contributed to differences in estradiol levels in females. 

 

On the other hand, we found that GSI in males varied dramatically with change in day 

length (Fig. 4A); this effect was not due to changes in the absolute size of the testes or 

the body. These observations suggest that spermatogenesis in axolotls increases with 

day length, that is in the spring. The data illustrated in Figure 4C further suggest that 

spermatogenesis continues through the summer and that spermiation, which causes 

declines in testis mass, begins in the fall or winter. This result fits with an estimate of the 

life cycle of sperm in axolotls, which indicates that sperm may be stored in vasa for only 

days or at most weeks, rather than the months seen in salamanders in which 

spermiation occurs in the fall and breeding in the spring [38]. If so, the pattern in axolotls 

differs from that of other ambystomids. In neotenic A. tigrinum, the GSI is moderate in 

March and declines throughout the breeding season, reaching a nadir in June; it then 

increases rapidly, peaking in August before beginning a gradual decline through the 
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following spring [42]. A similar pattern has been described for A. macrodactylum in 

Washington State [58], as well as for a salamandrid, Triturus carnifex [65]. Species 

differences, ecological differences, and differences between laboratory and wild 

populations may all contribute to the differences between axolotls and the other species 

described here. 

 

Previous studies of the effect of photoperiod on spermatogenesis in plethodontids and 

salamandrids have produced mixed results, with some researchers concluding that long 

days can alter the rate of spermatogenesis and others concluding that day length is 

irrelevant [e.g., 15, 28, 61]. We are unaware of any study, however, that has 

systematically examined the effect of changing photoperiod on reproductive activity in 

salamanders. Given the strong correlation we found between GSI and change in day 

length, our results suggest that previous conclusions about the effects of long days or 

short days should be reconsidered. 

 

We found no correlation between plasma androgen levels and GSI in axolotls (Fig. 1B). 

In the salamandrid Triturus carnifex, androgens also do not correlate with GSI in males 

[65]. On the other hand, we have analyzed the data for neotenic A. tigrinum presented 

by Norris et al. [42], and find a slight association between androgen levels and GSI (R2 = 

0.43, p = 0.07). Interestingly, levels of DHT are strongly correlated with GSI in these 

animals (R2 = 0.60, p = 0.02). It is not clear whether this result represents another 

difference between axolotls and tiger salamanders, or if we would obtain the same result 

if we were to measure DHT levels in axolotls. 

 

4.5. Are axolotls seasonal breeders? 
 

The reproductive activity of axolotls has not been studied in their native habitat; thus, we 

do not know whether they breed seasonally in the wild. Most ambystomids that have 

been examined have been reported to breed seasonally, including A. annulatum [52], A. 
californiense [36], A. maculatum and texanum [32], A. macrodactylum [58, 59], A. 
opacum [27], and A. talpoideum [46]. Seasonal breeding has also been described in 

neotenic populations and species, including A. dumerilii [6, 55], A. gracile [14], and A. 
tigrinum [41]. Nevertheless, not all ambystomids are seasonal breeders. A. ordinarium in 

the Michoacan district of Mexico breed either biannually or continuously: Anderson and 
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Worthington [2] describe finding eggs and larvae in both summer and winter. A. 
rosaceum, which is found in Western Mexico, generally breeds in during the summer 

rainy season but may breed biannually or year-round when permanent ponds are 

available [1]. Furthermore, studies of spermatogenesis in neotropical bolitoglossine 

salamanders indicate that males produce new sperm year-round, even in species that 

live in habitats with some seasonal variation in ecological factors, strongly suggesting 

that these animals are not seasonal breeders [9, 26, 57, 60]. The lack of seasonality in 

bolitoglossines is thought to be due to relative constancy of their environment; given that 

axolotls were originally in found in permanent lakes in the tropics, it seems possible that 

they also breed aseasonally. 

 

Publications that describe conditions for breeding axolotls in captivity indicate that males 

can spawn once a month or more and females every four to five months, although the 

success rate declines in the summer, as noted above [3, 20]. In addition, 

spermatogenesis in male axolotls occurs asynchronously among individuals in a colony, 

suggesting a lack of seasonality when animals are kept under constant conditions [38]. 

Given that axolotls have been bred in laboratories for nearly 150 years, it seems 

possible that they have been subjected to strong artificial selection for year-round 

breeding, and have perhaps lost their annual cycle. Nevertheless, the first published 

description of mating behavior in axolotls [18] mentions that Duméril obtained six 

clutches of eggs from a single female in 1865-66. Given that axolotls were brought to 

 a year to reach sexual maturity, 

this female cannot have been more than two generations removed from the wild, 

indicating that the ability of axolotls to breed year-round is not a product of intensive 

laboratory inbreeding. On the other hand, Gasco also describes his attempts to observe 

mating in axolotls that were kept on at near-ambient temperatures and a natural 

photoperiod in Genoa, Italy; he write that males started courting and laying 

spermatophores in February and that he obtained his first successful spawn in March, 

suggesting a role for environmental cues in controlling reproduction in axolotls. Our data 

indicate that changing day length and time of year both contribute to estradiol levels in 

females and that GSI in males can be dramatically altered by changing photoperiod over 

just two weeks, suggesting that seasonal factors play a role in reproduction in axolotls. 

In the laboratory, and perhaps in the wild, axolotls seem to be able to take advantage of 
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optimal conditions to breed more than once a year, or even continuously. The 

physiological basis of this ability is curious and worthy of examination. 
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Figure Legends 

 
Figure 1. Relationship between gonadosomatic index (GSI) and levels of sex steroids in 

adult female (A) and male (B) axolotls. Each point represents the mean of 3-10 

measurements for a single individual. Levels of both estradiol and androgens varied 

greatly among individuals, and in neither case is the correlation between hormone levels 

and GSI statistically significant. 

 
Figure 2. Relationships between levels of estradiol and external factors in adult female 

axolotls. (A) Animals were fed twice weekly and then food deprived for 10 days prior to 

blood collection (low feed condition) or were fed three times weekly, including the day 

before blood collection (high feed condition). Levels of estradiol in animals in the high 

feed condition were significantly higher than in those in the low feed condition. Bar 

height indicates mean of all individuals; error bar indicates SEM. Estradiol was also 

influenced by both change in day length (B) and calendar month (C), which were 

decorrelated in our experimental setup. When feeding condition was taken into account, 

both variables were revealed to have significant effects on estradiol levels. 

 

Figure 3. Changes in mass of ovaries, oviducts, and eggs in females (A) and testes in 

males (B) over the course of the calendar year, regardless of day length. In females, 

mass of reproductive tissue tends to be lower in the summer months and higher in the 

fall and winter (p = 0.07), but is not correlated with estradiol levels; in males, no seasonal 

effect is seen, and testis mass does not correlate with androgen levels. 

 
Figure 4. Relationships between GSI and external factors adult male axolotls. (A) 

Change in day length significantly altered GSI. In contrast, feeding condition (B) and 

month (C) did not by themselves have statistically significant effects on GSI; however, if 

change in photoperiod is taken into account both variables significantly alter GSI. 
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