
1. Introduction
Oceans are the largest inventory of actively cycling carbon in the world, accounting for approximately half 
of global net primary production and sequestering 30% of anthropogenic CO2 emissions (Field et  al.,  1998; 
Friedlingstein et al., 2020; Gruber et al., 2019). The biological transfer of organic matter from the surface to 
the ocean interior via the biological pump is one of the primary pathways for marine CO2 uptake and long-term 
storage (Boyd et al., 2019; Sigman & Boyle, 2000; Volk & Hoffert, 1985). Accurate quantification of the biolog-
ical pump is a key step toward characterizing the marine carbon cycle and its feedback on future climate change 
(Ducklow & Doney, 2013).

Net community production (NCP) results from the balance of gross primary production and community respira-
tion. Thus, it reflects the amount of organic matter produced in the upper layer available for export to the deep 
ocean, thereby constraining the biological pump's potential (Li & Cassar, 2017). The most common approaches to 
estimate export production and NCP include sediment traps (Betzer et al., 1984; Elskens et al., 2008),  234Th- 238U 
tracer (Buesseler,  1998; Murray et  al.,  1996), incubation-based 𝐴𝐴 NO3− incorporation rates (Dugdale & 
Goering, 1967; Eppley & Peterson, 1979), diel cycles of the microbially mediated oxygen fluxes via light-dark 
bottle incubation (Serret et  al.,  2001; Williams & Purdie,  1991), budgeting of biologically important tracers 
(Huang et al., 2022; Plant et al., 2016; Sarma, 2004), satellite estimates based on remotely sensed properties 
(Laws et al., 2011; Li & Cassar, 2016; Tilstone et al., 2015), and the dissolved O2/Ar ratio (Cassar et al., 2009; 
Craig & Hayward, 1987; Spitzer & Jenkins, 1989) (see further discussion below).

The oxygen saturation anomaly (ΔO2[total]), defined as the percentage departure of the dissolved oxygen concen-
tration from saturation, can be decomposed into abiotic (ΔO2[phy]) and biotic anomalies (ΔO2[bio]). ΔO2[bio] 
results from biological generation and consumption of oxygen (NCP) and other processes such as air-sea gas 
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Overall, our study represents a first attempt at deriving 𝐴𝐴 F[O2]bio as

 from snapshot measurements of oxygen, 
thereby paving the way toward using historical O2 data and a rapidly growing number of O2 measurements on 
autonomous platforms for independent insight into the biological pump.
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exchange of biological oxygen (𝐴𝐴 F[O2]bio as
 ) and vertical and horizontal mixing 

of biological oxygen (Cassar et al., 2014). On seasonal timescales, 𝐴𝐴 F[O2]bio as
 

is the primary driver of atmospheric potential oxygen and reflects the over-
all balance between marine NCP and ventilation (Keeling,  1993; Nevison 
et  al.,  2012,  2018). In regions where vertical and horizontal mixing is 
weak, 𝐴𝐴 F[O2]bio as

 approximates NCP (see details in Section 2.2). ΔO2[bio] can 
be estimated from ΔO2[total] and ΔO2[phy]. In the field, an increasingly used 
approach to account for ΔO2[phy] is to concurrently measure the inert gas, Ar, 
which has similar physical properties as oxygen (Cassar et al., 2009; Craig 
& Hayward, 1987; Spitzer & Jenkins,  1989). However, most dissolved O2 
measurements are not paired with inert gas measurements. Importantly, the 
long history and high precision of the dissolved oxygen record in oceanogra-
phy (Schmidtko et al., 2017) and the recent exponential increase in observa-
tions on remote platforms (e.g., profiling floats, moorings, and gliders) (Chai 
et al., 2020; Claustre et al., 2020) provide a unique opportunity for insight 
into the spatial and temporal variability of 𝐴𝐴 F[O2]bio as

 and NCP.

In this study, we derive and test empirical and mechanistic algorithms of 
ΔO2[phy] with the goal of estimating ΔO2[bio] from the growing number of 
surface ocean O2 observations. The first algorithm adopts the saturation 
anomaly of Ar predicted from a global ocean circulation model (hereafter 
called OGCM). The second algorithm derives ΔO2[phy] using satellite-derived 
physical drivers (i.e., temperature, wind speed, sea-level pressure) prior to 
the sampling day to force an iterative air-sea gas exchange model (hereaf-
ter called IAGM). The third approach uses the machine-learning approach 
of Genetic Programming to search for the empirical relationship between 

ΔO2[phy] and biophysicochemical parameters (hereafter called GPEM). We assess the models' performance by 
comparing simulations to field-collected ΔO2[phy] and ΔO2[bio] from 14 cruises. This study represents a proof-of-
concept effort to reconstruct 𝐴𝐴 F[O2]bio as

 and NCP based on measurements of total oxygen with the long-term objec-
tive of mining historical O2 datasets and a rapidly growing number of O2 observations on autonomous platforms 
to better understand oxygen and carbon cycling in the ocean.

2. Methods
2.1. Data Sources

2.1.1. Physical and Biological Variables Used in the Three Models

The monthly climatology of the noble gas saturation anomaly of Ar used in OGCM is from a global ocean circu-
lation model output (http://lod.bco-dmo.org/id/dataset/675575) (Nicholson et al., 2016). The meteorological and 
biological parameters used in IAGM and GPEM include: daily sea-level air pressure (PSLP), wind speed, rela-
tive air humidity, net air-sea heat flux at 2.5° resolution from NCEP/NCAR Reanalysis 1 (https://psl.noaa.gov/
data/gridded/data.ncep.reanalysis.html; Kalnay et al., 1996), 8-day average mixed layer depth (MLD) at 0.08° 
resolution (http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.mld125.hycom.php), remotely sensed 
daily chlorophyll-a at 0.08° resolution (https://oceancolor.gsfc.nasa.gov/), and 8-day average net primary produc-
tion (CbPM, Westberry et al. (2008)) at 0.08° resolution (http://sites.science.oregonstate.edu/ocean.productivity/
index.php). The MLD is defined as the depth with 0.125 kg/m 3 density increase relative to the 10 m reference 
based on the hydrographic data from the HYCOM model simulation (Wallcraft et al., 2008). The change in sea 
surface temperature (ΔSST_Qnet) driven by atmospheric forcing is computed from remotely sensed net air-sea 
heat flux (Qnet), combined with MLD and seawater heat capacity (𝐴𝐴 𝐴𝐴𝜌𝜌 ) (Millero et al., 1973) (Equations S1 and 
S2 in Supporting Information S1). We back-calculate SST records by subtracting daily ΔSST_Qnet from the 
ship-board temperature on the sampling date (Stanley et al., 2009).

2.1.2. Underway Concurrent Measurements of O2/Ar and O2 for the Model Training and Validation

To evaluate the performance of our three numerical approaches, we compile field measurements of O2/Ar and 
O2 from 14 cruises (Figure  1, Table S1 in Supporting Information  S1): two cruises in the Southern Ocean, 

Figure 1. Map of underway concurrent measurements of O2/Ar and O2 
concentration from 14 cruises used for model training/validation.
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SO-GasEx-2008 (https://www.bco-dmo.org/dataset/4059; Hamme et al., 2012), and LTER-2012 (https://zenodo.
org/record/5786352; Eveleth et al., 2017), three cruises in the North Atlantic (Bermuda-2017, Bermuda-2016, 
and Bermuda-2015, https://zenodo.org/record/5786352; Tang et  al.,  2019; Wang et  al.,  2018), six cruises in 
North Pacific, KM1906-2016 (https://zenodo.org/record/4009653#.YmY7WfPMJhE; Juranek et  al.,  2020), 
Oceanus-2017, Line P-2019-001, Line P-2018-040 and La Perouse-2017-009 (https://doi.pangaea.de/10.1594/
PANGAEA.933345; Izett et  al.,  2021; R. Izett & Tortell,  2020), California-2016 (https://oceaninformatics.
ucsd.edu/datazoo/catalogs/ccelter/datasets/290; Wang et  al.,  2020), and three Arctic cruises, OS191901-2019 
(https://arcticdata.io/catalog/view/doi%3A10.18739/A2HH6C69V), CCGS Amunden-2019 (https://doi.pangaea.
de/10.1594/PANGAEA.933345; Izett et al., 2021), and CCIN13242-2018 (https://zenodo.org/record/6124142#.
YmheU_PMK3I; Izett et al., 2021). The data near the ice-covered regions from the LTER-2012 cruise are not 
included because of difficulties in parameterizing the effects of ice dynamics on gas saturation (Cassar et al., 2021; 
Eveleth et al., 2014).

2.1.3. Global Oxygen Dataset for the Reconstruction of  and Field Measurements for 
Comparison

As a proof-of-concept, we leverage global historical oxygen observations and GPEM to extend the limited number 
of 𝐴𝐴 F[O2]bio as

 observations at the global scale based on the global oxygen dataset. To that end, we combine oxygen 
observations from the World Ocean Database 2018 (https://www.ncei.noaa.gov/products/world-ocean-database) 
(Boyer et al., 2018), the Hawaii Ocean Time-Series (HOT, 22.5°N and 158°W, https://hahana.soest.hawaii.edu/
hot/), Station Papa (50.0°N, 145.0°W; https://www.waterproperties.ca/linep/publications.php), the Bermuda 
Atlantic Time-Series Study (BATS, 31.7°N, 64.2°W; http://bats.bios.edu/) and Atlantic Meridional Transect 
cruises (https://www.amt-uk.org/Cruises). We also compile field estimates based on O2/Ar ratio measurements 
as a first-order evaluation of our large-scale projection. Discrete and underway O2/Ar data include samples 
collected and measured at HOT by Juranek and Quay (2005) and Quay et al. (2010), at Station Papa by Giesbrecht 
et  al.  (2012) and Timmerman et  al.  (2021) (https://doi.pangaea.de/10.1594/PANGAEA.923370), at BATS by 
Luz and Barkan (2009), and on two Atlantic Meridional Transect cruises (AMT-16 and AMT-17) by Juranek 
et al. (2010) (data provided by the first or corresponding author in the studies aforementioned).

2.2. Principle for Estimating  From Total Oxygen

Following Bushinsky and Emerson  (2015), the time rate of change of dissolved O2 in the mixed layer 
(𝐴𝐴 MLD × d [O2] ∕dt) can be expressed as the sum of the fluxes induced by NCP (mixed layer integrated photosyn-
thesis minus respiration, 𝐴𝐴 J[O2] NCP ), and a set of physical (abiotic) processes including air-sea exchange (𝐴𝐴 F[O2] as ), 
vertical mixing at the base of the mixed layer (𝐴𝐴 F[O2] v , broadly referring to the vertical processes including 
entrainment, diapycnal mixing, and wind-stress induced vertical advection), and horizontal advection (𝐴𝐴 F[O2] h ):

MLD
d [O2]

dt
= −F[O2] as − F[O2] v − F[O2] h

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Physical processes

+ J[O2] NCP (1)

In our study, we define the increase of oxygen within MLD as positive. The dissolved oxygen concentration in the 
seawater (𝐴𝐴 [O2]) can further be decomposed into biological 𝐴𝐴 ([O2]bio) and physical (or abiotic) (𝐴𝐴 [O2]phy ) components 
over the residence time of O2 within the mixed layer (Equation 2):

[O2] = [O2]bio + [O2]phy (2)

A mass balance equation similar to Equation 1 can be derived specifically for the biological oxygen signal at the 
ocean surface (Cassar et al., 2014; Equation 3):

MLD
d [O2]bio

dt
= MLDd [O2]

dt
− MLD

d [O2]phy

dt
= −

(

F[O2] as − F[O2]phy as

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
F[O2]bio as

−
(

F[O2] v − F[O2]phy v

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
F[O2]bio v

−
(

F[O2] h − F[O2]phy h

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
F[O2]bio h

+ J[O2] NCP (3)
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where the subscripts “bio” and “phy” refer to biological and physical oxygen, respectively. The only common 
term between Equations 1 and 3 is 𝐴𝐴 JO2 NCP

 . In other words, the impact of NCP on the total and biological O2 signals 
is identical. All the other terms of mixing, air-sea gas exchange, and time-rate of change do not have to be the 
same for total and biological O2. This is because the saturation gradients for these properties may not be the same 
(despite having identical exchange coefficients). For example, the oxygen saturation anomaly below the mixed 
layer may result from biological activity in the deep chlorophyll maximum or from subsurface heating.

O2/Ar-based estimates of NCP do not require an assumption of steady-state, representing a weighted average of 
past NCP (Teeter et al., 2018). For simplicity, we here assume steady-state (i.e., 𝐴𝐴 d [O2]bio ∕dt = 0, Equation 3) can 
be rearranged with 𝐴𝐴 F[O2]bio as

 reflecting the balance between NCP and vertical and horizontal mixing of biological 
oxygen:

F[O2]bio as
= −

(

F[O2] v − F[O2]phy v

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F
[O2]bio v

−

(

F[O2] h − F[O2]phy h

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F
[O2]bio h

+ J[O2] NCP

 (4)

𝐴𝐴 F[O2]bio as
 (the term on the left-hand side) can be parameterized from ΔO2[total] if ΔO2[phy] can be accurately esti-

mated or modeled (Equation 5):

F[O2]bio as
= kO2

×
(

[O2] − [O2]phy

)

= kO2
×
(

ΔO2[total] − ΔO2[ phy,modeled]

)

× [O2]sat (5)

where 𝐴𝐴 kO2
 is the gas exchange velocity parameterized by wind speed (Wanninkhof, 2014) (with a wind speed 

history weighting technique, Teeter et al. (2018)), and [O2]sat is the oxygen concentration at saturation calculated 
from temperature, salinity, and PSLP (Garcia & Gordon, 1992). When vertical and horizontal mixings are also 
negligible, 𝐴𝐴 F[O2]bio as

 is a measure of NCP in the mixed layer (Equation 6):

F[O2]bio as
≈ J[O2] NCP (6)

ΔO2[phy] is often estimated from anomalies in Ar because of their similar solubility and diffusive properties (Craig 
& Hayward, 1987). Using Ar as a proxy for ΔO2[phy] introduces minor uncertainties (Eveleth et al., 2014).

2.3. Algorithms to Estimate ΔO2[phy]

2.3.1. OGCM: ΔO2[phy] Predicted From the Global Ocean Circulation Model

In this algorithm, we adopt the modeled monthly climatology of ΔAr simulations derived from the OGCM model 
(Nicholson et al., 2016) to represent the ΔO2[phy]. The corresponding ΔAr is extracted by matching the in situ record 
of total oxygen to the closest grid of model output according to the sampling location and date. The modeled ΔAr 
includes the combined effects of multiple physical processes (i.e., temperature, salinity, PSLP, bubble, and water 
mass mixing) on the saturation state anomaly using an offline tracer simulation (Khatiwala, 2007; Nicholson 
et al., 2016). The circulation model used in Nicholson et al. (2016) is based on an ocean state estimate provided 
by the Estimating the Circulation and Climate of the Ocean (ECCO, version 2) consortium. The ECCO model 
is forced by adjusting the air-sea fluxes of heat, momentum, and freshwater in the MIT ocean general circula-
tion model. The horizontal resolution of this model is 1° × 1° with 23 vertical levels from 0 to 2,000 m. The 
air-sea exchange processes (i.e., air-sea gas diffusion and bubble injection) are dictated by applying the air-sea 
exchange model of Nicholson et al. (2011) to simulate ΔAr. The magnitudes of bubble-mediated flux processes 
are inversely constrained by a database of deep ocean noble gas and dissolved nitrogen observations (Ne, N2, Ar, 
Kr, and Xe). The wind speed and PSLP used to force the air-gas exchange model are taken from the 6-hourly CORE 
v2 data set. The ΔAr output presented in this study represents monthly climatology over the 1992–2004 period.

2.3.2. IAGM: ΔO2[phy] Predicted From an Iterative Air-Sea Gas Model

In the second approach, we develop a mechanistic semi-analytical model to estimate the ΔO2[phy]. Studies suggest 
that air-sea gas exchange is generally the dominant process controlling the surface inert gas saturation in the open 
ocean and that other physical processes (e.g., vertical mixing and horizontal advection) are of second-order impor-
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tance (Bushinsky & Emerson, 2015; Huang et al., 2018; Nicholson et al., 2011). As a first approximation, we 
assume that the effects of other physical processes (𝐴𝐴 F[O2]phy h

and F[O2]phy v
 ) on ΔO2[phy] are negligible (Equation 7).

MLD
d [O2]phy

dt
≈ −F[O2]phy as

 (7)

In our model, 𝐴𝐴 F[O2]phy as
 (and ΔO2[phy]) are determined by the PSLP and temperature effects on solubility, bubble, 

and diffusive gas exchange processes. To compute daily air-sea gas exchange fluxes, we adopt the air-sea gas 
exchange model developed by Liang et  al.  (2013) with the modifications to the bubble effect suggested by 
Emerson et al. (2019). This air-sea gas model explicitly includes the bubble-mediated gas flux.

The model is run iteratively with 1-day time steps and forced by the direct history of daily wind speed, PSLP 
with a water vapor correction (Weiss & Price, 1980), and temperature prior to the observation at each time step 
obtained from the reanalysis model (NCEP Reanalysis-I). We assume unchanged salinity throughout the model 
run duration, which should not have a large impact as the salinity influence on O2 solubility (away from ice and 
river outflows) is small (Hamme & Emerson, 2004). At each time step, the coefficients of the air-sea gas model 
and oxygen saturation are adjusted according to the corresponding physical parameters of that day. We correct 
for the effect of historical changes in PSLP on the O2 saturation (∆O2) by multiplying the saturation by the ratio 
of the PSLP to standard pressure (i.e., ∆O2 = 𝐴𝐴 O2∕O2[sat] ×

(

[𝑃𝑃SLP − 𝑃𝑃H2O
]∕[1, 013.25 − 𝑃𝑃H2O

]
)

 , where 𝐴𝐴 𝐴𝐴H2O
 is the 

water vapor and 𝐴𝐴 O2[sat] is the oxygen concentration at the saturation sate under the given temperature and salinity 
condition) (Izett & Tortell, 2021).

The iterative mass balance model is initialized assuming equilibrium conditions (∆O2[phy] at 0%), at the surface 
temperature, salinity, and PSLP we set up at the first-time step. The run duration at each sampling location is 
adjusted to the corresponding 4.6 residence time (representing a ∼99% oxygen ventilation, approximately 
20–150 days depending on the wind speed and thickness of the mixed layer). O2 saturation anomaly at the end of 
the model run is extracted as the state of ΔO2[phy], which is then used to isolate ΔO2[bio] from the field observation 
of ΔO2[total] (Equation 5) for the calculation of 𝐴𝐴 F[O2]bio as

. We compare this approach to the one in which we set 
the initial equilibrium conditions as the monthly Ar climatology predicted from OGCM (which is considered to 
provide a metric closer to the local steady-state, see the following discussion). These attempts yielded limited 
improvements in model accuracy.

2.3.3. GPEM: ΔO2[phy] Predicted From the Empirical Model Derived From Genetic Programming

The third approach is to leverage the machine-learning technique of Genetic Programming (GP) to search for the 
empirical relationship between ΔO2[phy] and biophysicochemical variables. Under some circumstances, the GP 
equation can identify the underpinning mechanisms controlling the ΔO2[phy]. Briefly, GP is a machine learning 
algorithm based on evolutionary computation and can be used to conduct symbolic regression (Koza, 1994). Akin 
to biological evolution, evolutionary algorithms randomly mutate the offspring during the model training, and 
only the offspring with the highest fitness for a given complexity are reproduced.

To develop the GPEM, we select eight cruises for training (Bermuda-2016, Bermuda-2015, La Perouse-2017-009, 
LTER-2012, Line P-2018-040, Ocean-2017, CCIN1342-2018, and CCGS Aumudesn-2019) (n  =  1,208) and 
the remaining six cruises as an independent validation dataset (Bermuda-2017, OS1901-2019, KM1906-2016, 
California-2016, SO-GaxEx-2008, and Line P-2019-001) (n = 1,352). The training and validation datasets both 
encompass a wide spectrum of ocean provinces (e.g., subtropical ocean, subarctic ocean, Arctic, and coastal 
regions) and ensure the generalizability of the model training and validation. We select a suite of environmental 
predictors which might be directly or indirectly related to the observed ΔO2[phy], including the sampling date and 
location, field measured variables (ΔO2[total], O2, sea surface temperature, and salinity), historical records of phys-
ical and biological parameters from satellite observations and reanalysis models (e.g., MLD, sea surface temper-
ature, wind speed, PSLP, chlorophyll-a, and net primary production). The detailed description of the predictors is 
summarized in Table S2 in Supporting Information S1. We include all possible predictors into the model training 
and allow the machine to identify the most reliable predictors.

GP generates a set of candidate solutions with model accuracy generally increasing with complexity (Table S3 
in Supporting Information  S1). Selection of a solution is somewhat arbitrary, reflecting a trade-off between 
balancing model accuracy and complexity. For our GPEM, we choose the equation with a complexity level of 8 
because a limited improvement in model accuracy results from greater complexity (Equation 8):
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ΔO2[phy] = 73.1 + 0.39 × ΔO2[total] in situ + 0.048 × SSTin situ − 7.27 × 10
−2

× 𝑃𝑃SLP in situ + 8.11 × ΔSST (8)

where SSTin_situ (°C) is the underway measurement of sea surface temperature, PSLP_in situ (mbar) is 
the contemporaneous sea-level pressure on the sampling date, and ΔO2[total]_in situ (%) is the ship-board 
measured total oxygen anomaly with the correction for PSLP_in situ and water vapor (ΔO2[total]_in situ 
= 𝐴𝐴 O2∕O2[sat] ×

(

[PSLP in situ − 𝑃𝑃H2O
]∕[1, 013.25 − 𝑃𝑃H2O

]
)

 ). 𝐴𝐴 ΔSST (°C d −1) represents the linear slope of the histor-
ical SST change calculated as the difference in the end-member values between the sampling date (𝐴𝐴 SSTday 0) 
and the date prior to the sampling date corresponding to the residence time of oxygen within MLD (𝐴𝐴 SSTday −n) , 

divided by the residence time in days (𝐴𝐴 ΔSST = (SSTday 0 − SSTday −n)∕n , where n is the day length of residence 
time of oxygen within MLD). Repeated reconstructions of the training dataset result in equations with equivalent 
performance and similar predictors.

2.4. Model Validation by Field Measurements

Fourteen cruises with simultaneous measurements of total oxygen concentration and O2/Ar ratio are used 
for model validation (Figure 1). The continuous underway measurements are averaged into daily values with 
0.5° × 0.5° resolution to reduce spatial and temporal autocorrelation between observations.

The approaches to calculate ΔO2[phy], ΔO2[bio], and 𝐴𝐴 F[O2]bio as
 from field observations and model outputs are 

summarized in Table 1. The in situ measurement of ΔAr can be calculated from the measured Δ(O2/Ar) via 
EIMS and the ΔO2[total] (with the correction for PSLP and water vapor) measured by the optode (Equation 9). The 
detailed derivation of Equation 9 is described in Eveleth et al. (2017):

ΔAr =
ΔO2[total] + 1

(Δ (O2∕Ar) + 1)
− 1 (9)

ΔO2[bio] is derived from field measurements of Δ(O2/Ar) and ΔAr following Equation 10:

ΔO2[bio] =
[Ar]

[Ar]sat

Δ (O2∕Ar) = (1 + ΔAr) Δ (O2∕Ar) (10)

ΔO2[bio] is used to calculate the in situ 𝐴𝐴 F[O2]bio as
 according to the equations presented in Table 1.

2.5. Statistical Analysis

To evaluate the predictive skills of the algorithms, we calculate the coefficient of determination (R 2) and root 
mean square error (RMSE) for pairwise in situ observations versus model simulations for the test dataset. The 
significance is satisfied if the type I error rate (p) is less than 0.05. All the figures and statistical analyses are 
performed in R (R Core Team, 2014).

ΔO2[phy] ΔO2[bio] 𝐴𝐴 F[O2]bio as
 

Field observation ΔAr
(1 + ΔAr) × (ΔO2∕Ar) 𝐴𝐴 kO2

× (ΔO2∕Ar) × [O2]sat 

Model ΔO2[phy] 𝐴𝐴 ΔO2[total] − ΔO2[modeled,phy] 𝐴𝐴 kO2
×
(

ΔO2[total] − ΔO2[modeled,phy]

)

× [O2]sat 

Note. ΔO2[total]: total (observed) oxygen saturation anomaly with the correction for sea-level pressure and water vapor; 
ΔO2[phy]: physical oxygen saturation anomaly; ΔO2[bio]: biological oxygen saturation anomaly; 𝐴𝐴 F[O2]bio as

∶ air-sea gas flux of 
biological oxygen; ΔAr: saturation anomaly of Argon; [O2]sat: oxygen concentration at the saturation with the correction for 
sea-level pressure and water vapor; and 𝐴𝐴 kO2

 : gas exchange velocity.

Table 1 
Summary of Field Observations/Estimates Used for Model Training/Validation
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3. Results and Discussion
3.1. In Situ Measurements of ΔO2[total], ΔO2[phy], and ΔO2[bio]

ΔO2[total], ΔO2[phy], and ΔO2[bio], and their relations for the 14 cruises are shown in Figures 2 and 3. ΔO2[total] 
exhibits substantial variability ranging between −40% and 45%. The dominating factors controlling ΔO2[total] 
vary. At low ΔO2[total], ΔO2[total], and ΔO2[bio] converge onto the identity line (Figure 3a), indicating that biolog-
ical processes are the main factor driving low ΔO2[total] in our pooled dataset. The negative ΔO2[bio] observed 
might reflect heterotrophy (Hamme et al., 2012) or vertical mixing of subsurface oxygen-depleted water (e.g., 
coastal North Pacific during Line P-2019-001 and La Peouse-2017-009 expeditions) (Izett et al., 2018; Wang 
et  al.,  2020). Approximately 75% of ΔO2[bio] is positive, suggesting a prevailing autotrophic state (i.e., gross 
primary production exceeding the community respiration). In contrast, high ΔO2[total] is mainly associated with 
high ΔO2[phy] (Figure 3b). Approximately 80% of ΔO2[phy] is in the range between −4% and 6%, falling within 
the range of previous open ocean estimates (Eveleth et al., 2014, 2017). This is also comparable with the global 
range (from −4 to 8%) of direct measurement of surface ΔAr synthesized by Hamme et al. (2019). The extremely 
high ΔO2[phy] (i.e., >10% in the Arctic region measured during CCGS Amundsen-2019 expedition) likely results 
from the combined effect of the artificially induced bubbles in the ship underway lines (Juranek et al., 2010; Izett 
et al., 2021) and rapid heating event prior to the cruises (Figure S1 in Supporting Information S1).

Figure 2. Underway measurements of the total, physical, and biological oxygen saturation anomalies (ΔO2[total], ΔO2[phy], and 
ΔO2[bio], respectively) on the 14 cruises shown in Figure 1. Note: ΔO2[total] is derived from the optode oxygen and underway 
temperature and salinity measurements (with the correction for sea-level pressure and water vapor). ΔO2[phy] and ΔO2[bio] are 
calculated from the in situ O2/Ar measurements and ΔO2[total] (Equations 9 and 10).
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The factors controlling the biological and physical anomalies are mostly independent, and thereby their relative 
intensity ultimately determines their respective contributions (Figures 2 and 3). We observe a close coupling 
between the ΔO2[bio] and ΔO2[total] in the region of the western Atlantic during the year 2017 (Bermuda-2017 
expedition), California Current System (California-2016 expedition), central North Pacific (KM1906-2016 expe-
dition). During these cruises, the impact of the biological and physical processes on ΔO2[total] is comparable. 
In contrast, ΔO2[bio] in the Southern Ocean (LTER-2012 and SoGasEx-2012 cruises) and subtropical western 
Atlantic (Bermuda-2016 cruise) are relatively low, typically less than 2%, and ΔO2[phy] is a dominating factor 
governing ΔO2[total] variability.

3.2. Comparison of Model Simulations to the Field Measurements

A comparison of field and modeled estimates of ΔO2[phy] for the 14 cruises are presented in Figures 4 and 5a–5c. 
In principle, OGCM more comprehensively incorporates contributions of physical processes on gas supersatura-
tion such as water mass mixing, entrainment, and advection under the framework of the global circulation model 
(Nicholson et al., 2016). In contrast, IAGM only accounts for the effect of air-sea transfer on the physical super-
saturation. However, the global ocean circulation output is a monthly climatology at a one-degree resolution. 
Not accounting for the important influence of synoptic events smooths ΔO2[phy] (Figure 4). Thereby, the model 
output of ΔO2[phy] from Nicholson et al. (2016) tends to suggest a saturation signal close to the local steady-state. 
By accounting for the history of physical drivers prior to the sampling day, IAGM better captures the broad 
variability of measured ΔO2[phy] on cruises where rapid changes in SST prior to the sampling day were observed 
(i.e., Bermuda-2017, Bermuda-2016, KM1906-2016, and LTER-2012 expeditions, Figure 4 and Figure S1 in 
Supporting Information S1). However, the IAGM model shows limited improvement on the prediction accuracy 
of ΔO2[phy] for the pooled dataset (R 2 = 0.19, RMSE = 4.5%) compared to OGCM (R 2 = 0.22, RMSE = 4.2%, 
Figures 5a and 5b, Table 2) because of substantial uncertainties in the low ΔO2[phy] range (0%–3%). The errors 
may, in part, reflect limitations of the model with poorly constrained contributions and parameterization of 
air-sea gas fluxes (Emerson et al., 2019; Liang et al., 2017), model initiation ΔO2[phy] (prior set to 0% in our 
study), uncertainties in satellite-derived variables, and omitting the vertical mixing terms in IAGM.

GPEM captures the variability relatively well in field estimates of ΔO2[phy] from the six valida-
tion cruises (Figure  4), representing a significant improvement in model performance compared to the 
other two models (R 2  =  0.74, RMSE  =  1.4%, Figure  5c, Table  2). The formulation generated by GP 
incorporates shipboard measurements of SST, ΔO2[total] with the correction for PSLP and water vapor 
(∆O2 = 𝐴𝐴 O2∕O2[sat] ×

(

[𝑃𝑃SLP − 𝑃𝑃H2O
]∕[1, 013.25 − 𝑃𝑃H2O

]
)

 ),  simultaneous PSLP, and temperature change over the 
residence time of O2 within the MLD (Equation 8). Based on a sensitivity analysis and spatiotemporal variability 
of each predictor in the ocean (Table S4 and Figure S2 in Supporting Information S1), ΔO2[total] ranks as the most 
important factor in predicting ΔO2[phy] in the GEPM. It is a not surprising result because ΔO2[total] reflects multiple 
processes (Figure 3). As shown in the pooled dataset (Figure 3b), ΔO2[total] and ΔO2[phy] are highly correlated but 

Figure 3. Scatter plot of in situ observations/estimates of total oxygen saturation anomaly (ΔO2[total]) with (a) biological 
oxygen saturation anomaly (ΔO2[bio]) and (b) physical (ΔO2[phy]) for the pooled dataset of 14 cruises. Note: ΔO2[total] is derived 
from the optode oxygen and underway temperature and salinity measurements, with the correction for sea-level pressure and 
water vapor. ΔO2[phy] and ΔO2[bio] are calculated from the in situ O2/Ar measurements and ΔO2[total] (Equations 9 and 10).
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deviate from the 1:1 line. The role of other physical predictors assimilated in the empirical algorithm is likely 
to simulate the regionally or temporally dependent offset, allowing better predictions of ΔO2[phy] from ΔO2[total]. 
Note that ΔO2[total] shown herein is a term already incorporating the impact of SLP on the ΔO2[phy] (by directly 
altering the oxygen concentration at the saturation, Eveleth et al. (2014)). Interestingly, PSLP is a predictor selected 
by the GPEM and ranks as a secondary importance factor (Table S4 in Supporting Information S1), suggesting 
that the GPEM compensates for an incomplete PSLP correction. The importance of SST and SSTin_situ are almost 
equal in GEPM, and less important than ΔO2[total] and PSLP (Table S4 in Supporting Information S1). In line with 
the results from the IAGM simulations, rapid temperature changes can be a strong driver of the physical oxygen 
saturation anomaly in some circumstances. Biological parameters and wind speed were not selected as important 
predictors, most likely because they are already captured by ΔO2[total]. Uncertainties in these products could also 
mask their relationship with ΔO2[phy]. We also note that statistical inferences from the equation should be inter-
preted with caution as GP is predictive, not explanatory.

As expected, when a particular model under-(over-) estimates ΔO2[phy], the modeled 𝐴𝐴 F[O2]bio as
 shows positive 

(negative) biases. The OCGM and IGAM do not improve on 𝐴𝐴 F[O2]bio as
 predictions (R 2 = 0.21, RMSE = 21 mmol 

O2 m −2  d −1 for OGCM; R 2  =  0.27 RMSE  =  18  mmol O2 m −2  d −1 for IAGM, Figures  5 and  6, Table  2) 

Figure 4. Comparison of model predictions to in situ measurements of physical oxygen saturation anomaly (ΔO2[phy]) on 
the 14 cruises. The cruises labeled with stars refer to the cruises used to train the GPEM algorithm (empirical model derived 
from Genetic Programming). A 5-point running average was applied to the field estimates. Note: field estimates of ΔO2[phy] 
are derived from the in situ O2/Ar measurement and ΔO2[total] (Equation 9). OGCM: ΔO2[phy] predicted from the global ocean 
circulation model. IAGM: ΔO2[phy] predicted from an iterative O2 air-sea gas model.
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compared to a model which assumes a constant ΔO2[phy] of 2.5% (median value of pooled ΔO2[phy]) (R 2 = 0.18 
RMSE = 20 mmol O2 m −2 d −1). 𝐴𝐴 F[O2]bio as

 derived from GPEM captures the broad spatial variability (Figure 6) 
in the six validation cruises, and the slopes of simulations versus observations converge onto the identity line 
(Figures 5d–5f). In regions where vertical mixing is negligible, 𝐴𝐴 F[O2]bio as

 should reflect NCP. Overall, the perfor-
mance of GPEM (R 2 = 0.72, RMSE = 7.1 mmol O2 m −2 d −1, Table 2) is comparable to other NCP models such 

Figure 5. Comparison of model predictions versus in situ estimates of (a–c) physical oxygen saturation anomaly (ΔO2[phy]) and (d–f) air-sea biological flux (𝐴𝐴 F[O2]bio as
 ) 

for the pooled dataset. The cruises labeled with stars refer to cruises used to train the GPEM (empirical model derived from Genetic Programming). OGCM: global 
ocean circulation model. IAGM: iterative O2 air-sea gas model. Note: field estimates of ΔO2[phy] are derived from the in situ O2/Ar measurement and ΔO2[total] 
(Equation 9).

Algorithm Descriptions ΔO2[phy] (n = 2,560) 𝐴𝐴 F[O2]bio as
 (n = 2,560)

Measured Underway measurements of O2/Ar and O2 concentration Q1: 1.2%; Q2: 2.8%; Q3: 6.1% Q1: 2.1 mmol O2 m −2 d −1; Q2: 6.8 mmol O2 
m −2 d −1; Q3: 14.9 mmol O2 m −2 d −1

OGCM The monthly climatology of ΔAr from the global ocean 
circulation prediction used for ΔO2[phy]

R 2 = 0.22, p < 0.01; RMSE = 4.2%; R 2 = 0.21 p < 0.01; RMSE = 21 mmol O2 m −2 d −1;

Q1: 0.94%; Q2: 1.5%; Q3: 4.5% Q1: 2.0 mmol O2 m −2 d −1; Q2: 13.1 mmol O2 
m −2 d −1; Q3: 29.1 mmol O2 m −2 d −1

IAGM ΔO2[phy] derived from an iterative air-sea gas exchange 
model

R 2 = 0.19, p < 0.01; RMSE = 4.5% R 2 = 0.27 p < 0.01; RMSE = 18 mmol O2 m −2 d −1;

Q1: 0.31%; Q2: 1.64%; Q3: 2.92% Q1: 4.1 mmol O2 m −2 d −1; Q2: 15.2 mmol O2 
m −2 d −1; Q3: 29.2 mmol O2 m −2 d −1

GPEM Empirical equation derived by Genetic Programming Training dataset (n = 1,208): Training dataset (n = 1,208):

R 2 = 0.81, p < 0.01; RMSE = 1.3% R 2 = 0.74, p < 0.01; RMSE = 5 mmol O2 m −2 d −1;

Q1: 2.1%; Q2: 4.9%; Q3: 7.7% Q1: 4.1 mmol O2 m −2 d −1; Q2: 8.5 mmol O2 
m −2 d −1; Q3: 15 mmol O2 m −2 d −1

Validation (n = 1,352): Validation (n = 1,352):

R 2 = 0.74 p < 0.01; RMSE = 1.4% R 2 = 0.72, p < 0.01; RMSE = 7.1 mmol O2 
m −2 d −1;

Q1: 0.48%; Q2: 1.42%; Q3: 2.25% Q1: 4.1 mmol O2 m −2 d −1; Q2: 13.2 mmol O2 
m −2 d −1; Q3: 20.2 mmol O2 m −2 d −1

Note. Q1, Q2, and Q3 indicate the 25%, 50%, and 75% quartiles of the pooled dataset, respectively. OGCM: global ocean circulation model. IAGM: iterative O2 air-sea 
gas exchange model; GPEM: empirical model derived by Genetic Programming.

Table 2 
Prediction Skills of the Three Algorithms Used in This Study to Reconstruct Air-Sea Gas Flux of Biological Oxygen (𝐴𝐴 F[O2]bio as

 ) Based on Observations of the Total 
Oxygen Anomaly
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as statistical models based on light-dark bottle incubation (R 2 = 0.61, RMSE = 26 mmol O2 m −2 d −1) (Tilstone 
et al., 2015) and machine-learning algorithms based on O2/Ar observations (R 2 = 0.78, RMSE = 2.1 mmol O2 
m −2 d −1) (Li & Cassar, 2016).

3.3. Testing the Feasibility of Reconstructing Broad-Scale  Patterns From Historical Oxygen 
Observations

As a proof-of-concept, we leverage global historical oxygen observations and the GPEM model to extend the 
limited number of 𝐴𝐴 F[O2]bio as

 observations at the global scale (Figures 7 and 8). The general agreement between 
the model simulations and observations is further supported by snapshot O2/Ar observations at three ocean 
time-series observation stations (HOT, BATS, and Papa) and on two Atlantic Meridional Transects cruises 
(AMT-16 and AMT-17) (Figure 7). However, while the general patterns of 𝐴𝐴 F[O2]bio as

 are captured (R 2 = 0.43, 
p < 0.05, RMSE = 8.1 mmol O2 m −2 d −1 for the pooled dataset shown in Figure 7), an offset is sometimes present 
(e.g., AMT-16 and AMT-17).

Our global projection (Figure  8) provides an independent constraint on 𝐴𝐴 F[O2]bio as
 and the drivers of variabil-

ity in atmospheric potential oxygen. The annual integrated 𝐴𝐴 F[O2]bio as
 are −1.15 mol C m −2 yr −1 at 50°–70°N, 

Figure 6. Comparison of model predictions versus in situ estimates of the air-sea gas flux of biological oxygen (𝐴𝐴 F[O2]bio as
 ). A 

5-point running average was applied to the field estimates. The cruises labeled with stars refer to the cruises used to train the 
GPEM (empirical model derived from Genetic Programming). OGCM: global ocean circulation model. IAGM: iterative O2 
air-sea gas model.
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1.3 mol C m −2  yr −1 at 30°–50°N, 0.8 mol C m −2  yr −1 at 10°–30°N, 0.01 mol C m −2  yr −1 at −10°S −10°N, 
0.1 mol C m −2 yr −1 at 10°–30°S, 0.67 mol C m −2 yr −1 at 30°–50°S and −0.23 mol C m −2 yr −1 at 30°–50°S (C:O 
ratio = 1.4, Laws (1991)). In the high latitude, our projected 𝐴𝐴 F[O2]bio as

 displays a more pronounced seasonality, 
shifting between positive and negative values. 𝐴𝐴 F[O2]bio as

 reflects the overall balance between NCP and ventilation 
of biological oxygen and thus is not expected to equal NCP in regions with active upwelling (i.e., parts of the 
Southern Ocean, Cassar et al. (2014); Jonsson et al. (2013), and equatorial ocean, (Wyrtki, 1981)) and strong 
entrainment process (i.e., subarctic northern Atlantic, Tandon and Zahariev (2001)). It also should be noted that 
the uneven distribution of oxygen data (i.e., fewer data in the Pacific than Atlantic and during winters, Figure 8a) 
can lead to biases in latitudinal 𝐴𝐴 F[O2]bio as

 band projections. Overall, global projection implemented herein repre-
sents a preliminary effort.

Figure 7. Air-sea gas flux of biological oxygen (𝐴𝐴 F[O2]bio as
 ) at three ocean time-series stations (HOT, BATS and Papa) and on two Atlantic Meridional Transects 

cruises (AMT-16 and AMT-17). The red and blue dots represent estimates derived from our GPEM (empirical model derived from Genetic Programming) and field 
measurement of O2/Ar, respectively.

Figure 8. (a) Global distribution of oxygen observations from the World Ocean Database 2018 (WOD2018) and (b) monthly climatology of our GPEM (empirical 
model derived from Genetic Programming) projected air-sea biological O2 flux (𝐴𝐴 F[O2]bio as

 ) at various latitudinal bands based on the oxygen measurements from Word 
Ocean Database 2018.
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4. Summary and Next Steps
Overall, our study represents a first attempt at reconstructing 𝐴𝐴 F[O2]bio as

 and NCP from global measurements 
of total oxygen and paves the way toward fully utilizing the historical O2 data and a rapidly growing number 
of autonomous measurements in constraining the biological pump.  This study uses empirical and mechanis-
tic approaches to parameterize ΔO2[phy]. Model performance is evaluated by comparison against observations 
collected on 14 cruises across several ocean basins. The third algorithm, which is an empirical function incorpo-
rating field-measured properties and the history of physical parameters prior to the sampling day, provides the 
most reliable estimates of ΔO2[phy] and 𝐴𝐴 F[O2]bio as

 .

While the models we present show promise, more work is needed to estimate 𝐴𝐴 F[O2]bio as
 and NCP from total O2. 

Future improvements include (a) reduction in the uncertainty in ΔO2[phy] measurements by improving optode 
calibrations, correcting potential biases in the O2 signal induced by seawater temperature change, bubble effect, 
and oxygen loss due to the biofilm activity in the ship underway lines (Juranek et al., 2010), and (b) collection of 
more data to further test the generalizability of our models. The methods proposed here and future modifications 
may also lead to new insights into drivers of variability in atmospheric potential oxygen. In regions where verti-
cal  mixing is negligible or accurately estimated, 𝐴𝐴 F[O2]bio as

 can provide independent estimates of NCP.

Data Availability Statement
All data required to conduct this study are publicly available through the links provided in the Section 2.1.
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