
1.  Introduction
Information on phytoplankton populations at large spatial and temporal scales is needed to assess broad-scale 
changes in phytoplankton communities, which are likely to occur in response to changing environmental condi-
tions (Irwin & Oliver, 2009; Rousseaux & Gregg, 2015), and to develop and evaluate regional and global biogeo-
chemical models. Of particular interest are the diatoms, a globally ubiquitous and diverse group of phytoplankton 
consisting of an estimated 100,000 species (Mann & Vanormelingen, 2013). Some species can form massive 
blooms and their aggregation and sinking characteristics have been linked to sequestration of carbon to the deep 
ocean (Honjo & Manganini, 1993; Jin et al., 2006). While diatoms are highly varied in their adaptations to differ-
ent conditions and their role in the biological carbon pump (Kemp & Villareal, 2018; Tréguer et al., 2018), for the 
purposes of regional or global assessment they are often considered as one group. Satellite-based measurements 
have the potential to provide the large-scale information on the quantity and distribution of diatoms needed to 
answer ocean ecosystem and climate research-related questions.

Previous studies have successfully linked satellite ocean color and reflectance data with phytoplankton groups 
assessed using flow cytometry (Thyssen et al., 2015; Zubkov and Quartly, 2003). Regarding diatom presence or 
abundance, information retrieved from remote sensing data include the analysis of multispectral water leaving 
radiance anomalies (Alvain et al., 2005, 2008; Rêve-Lamarche et al., 2017), remote sensing reflectance (Rrs(λ)) 
band ratios (Kramer et al., 2018; Sathyendranath et al., 2004), a neural network approach incorporating envi-
ronmental data (Raitsos et al., 2008), empirical orthogonal functions between Rrs(λ) bands and phytoplankton 
groups (Xi et al., 2020), and a method of differential optical absorption spectroscopy (DOAS) that requires high 
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spectral resolution of water-leaving radiation measurements in the blue wavelengths (Bracher et al., 2009; Losa 
et al., 2017; Sadeghi et al., 2012). Phytoplankton pigment concentrations obtained from high performance liquid 
chromatography (HPLC) measurements are used in the construction and evaluation of the majority of these algo-
rithms. While pigment analysis is invaluable for many applications and has been effective in assessing different 
phytoplankton groups (e.g., Kramer et al., 2020; Kramer & Siegel, 2019; Swan et al., 2016), it often lacks vali-
dation against more direct observations of community composition. For example, fucoxanthin, a photosynthetic 
carotenoid pigment found in diatoms (Jeffrey & Vesk,  1997), is commonly used as a marker for this group, 
although it is not unique to it and is present in other common phytoplankton groups, namely prymnesiophytes and 
silicoflagellates (Jeffrey & Vesk, 1997; Roy et al., 2011). Moreover, pigment ratios within a population can vary 
in response to the availability of light and nutrients, and as a result of diel changes in pigment synthesis (Becker 
et al., 2020; Goericke & Montoya, 1998; Organelli et al., 2017).

Historically available data on phytoplankton assemblages typically do not have the spatial and temporal cover-
age needed for obtaining sufficient matches with remote sensing data, with the exception of continuous plank-
ton recorder (CPR) data. CPR data have been applied to improve and develop algorithms for the detection of 
diatoms from remote sensing data (Raitsos et  al.,  2008; Rêve-Lamarche et  al.,  2017); however, the data are 
semi-quantitative. In addition, the CPR data likely underestimate diatom biomass given the 270 μm mesh size it 
utilizes (Richardson et al., 2006). Advances in plankton imaging now allow measurements of cell concentrations 
and cell biovolumes from which estimates of carbon per-cell can be derived. We used imaging-in-flow cytom-
etry and HPLC measurements from the western North Atlantic to compare cell imagery-based and accessory 
pigment-based estimates of diatom carbon. Based on these measurements, we propose a new empirical rela-
tionship between diatom carbon and chlorophyll a (Chl a). We also show how satellite-derived information on 
Chl a, temperature, and salinity can be integrated to estimate diatom carbon, and compare results to those from 
accessory-pigment and Chl a-based estimates.

2.  Data and Methods
2.1.  In Situ Temperature, Salinity, and Pigments

The North Atlantic Aerosol and Marine Ecosystems Study (NAAMES, 2015–2018) was conducted in the west-
ern North Atlantic onboard the R/V Atlantis, and encompassed different seasons and stages of the phytoplank-
ton annual cycle (Behrenfeld et al., 2019). In-situ data used in this study were obtained both from instruments 
deployed for continuous (flowthrough) measurement of surface temperature, salinity, and Chl a concentrations, 
and from discrete water samples collected for the analysis of HPLC pigment concentrations (Figure 1a). The 
methods and processing protocols of these data types are provided in Text S1 in Supporting Information S1. Note 
that throughout the manuscript, Chl a from HPLC refers to as “total Chl” and is defined as the sum of the concen-
trations of monovinyl Chl a + divinyl Chl a + chlorophyllide a + Chl a allomers and epimers.

2.2.  Diatom Carbon Estimated From Plankton Imagery

Phytoplankton cells were imaged with an Imaging FlowCytobot (IFCB, McLean Research Laboratories, Inc.; 
Olson & Sosik, 2007) with a 150 μm Nitex mesh attached to the intake (Text S2 in Supporting Information S1). 
Images were classified into the highest taxonomic category possible based on morphology using the EcoTaxa 
platform (Picheral et al., 2017; https://ecotaxa.obs-vlfr.fr/), and then grouped more broadly into 18 categories, 
including a category for all combined diatoms. A deep learning classification network was trained and tested 
using the classified images, and then applied to all images within the data set (Text S2 in Supporting Informa-
tion S1). The network identified diatoms with 90% accuracy, and in addition was found to correct some mislabe-
led classified images due to human error (Text S2 in Supporting Information S1). In total, 336,872 diatom cells 
or chains were identified from 4,328 IFCB samples across all four NAAMES cruises (Figure 1b; Figure S1 in 
Supporting Information S1). When cell counts were low, multiple samples were combined to increase sample 
volume and reduce statistical counting uncertainty, as in Chase et al. (2020); details are provided in Text S2 in 
Supporting Information S1. Following the procedure to combine samples, the final number of IFCB samples 
used in the present analysis is 1,449. Biovolume (μm 3) was calculated for each diatom cell or chain (Moberg 
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& Sosik, 2012; Sosik & Olson, 2007; https://github.com/hsosik/ifcb-analysis/tree/features_v3), and converted 
to diatom carbon (Cdiat) following the diatom-specific formula reported by Menden-Deuer and Lessard (2000):

𝐶𝐶diatcell−1[pg] = 0.288 ∗ cell volume
[

𝜇𝜇m3
]0.811� (1)

On average, diatoms have a lower carbon per volume compared to other phytoplankton (see figure 5 in Menden-Deuer 
& Lessard, 2000), which may be the result of large vacuoles often present in diatoms (Strathmann, 1967). We 
calculated uncertainties in Equation 1 using the confidence intervals for the coefficients reported in table 4 of 
Menden-Deuer and Lessard (2000). A recent study by McNair et al. (2021) showed that the conversion from cell 
volume to carbon is not greatly affected by the method used to estimate cell volume. Total diatom carbon concen-
trations for a given sample were normalized to the sample water volume, resulting in diatom carbon concentration 
per sample (Cdiat_IFCB, units of mg m −3).

2.3.  Diatom Carbon Estimated From Accessory Pigments

The fraction of diatom contribution to total Chl a was estimated using a method often referred to as the diagnostic 
pigment analysis (DPA), which assigns accessory pigments to phytoplankton groups. The application of acces-
sory “diagnostic” pigments was originally used to define phytoplankton size classes (Uitz et al., 2006; Vidussi 
et al., 2001), and has subsequently been used to define phytoplankton taxonomic groups (Hirata et al., 2011; 
Losa et al., 2017; Soppa et al., 2014). Using a global data set, the fraction of total Chl a attributed to diatoms was 
defined by Hirata et al. (2011) as:

𝑓𝑓DiatH11 =
1.41Fucocorr
∑

DP𝑤𝑤
� (2)

where the summed weighted diagnostic pigments are defined as 𝐴𝐴
∑

DPw  = 1.41Fuco + 1.41Peri + 1.27Hexa + 
0.35Buta + 0.6Allo + 1.01Chlb + 0.86Zea (Uitz et al., 2006), and where Fucocorr = Fuco – (Fuco/Hexa)baseline *  
Hexa (Hirata et  al.,  2011). Pigment abbreviations are as follows: Fuco  =  fucoxanthin, Peri  =  peridinin,  

Figure 1.  (a) The four NAAMES cruise tracks in the western North Atlantic Ocean. Colored dots show IFCB sample locations; blue = NAAMES01 in November 
2015; orange = NAAMES02 in May-June 2016; yellow = NAAMES03 in August-September 2017; and purple = NAAMES04 in March-April 2018 (total n = 4,328). 
Black squares show locations of water samples taken for HPLC analysis (n = 205). Scenes 1 and 2 from NAAMES02 further analyzed with satellite data are outlined in 
red boxes. (b) Example diatom images collected underway during NAAMES02. Black 10 μm scale bars on each image are equivalent. Genera/categories of each image: 
A—Chaetoceros sp., B—likely Guinardia sp., C—Pseudo-nitzschia sp., D—order Naviculales, E—Chaetoceros sp., F—Corethron sp., G—unidentified pennate, H—
Thalassiosira sp., I—unidentified centric, J—Guinardia sp., K—Rhizosolenia sp.
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Hexa  =  19′-hexanoyloxyfucoxanthin, Allo  =  alloxanthin, Buta  =  19′-butanoyloxyfucoxanthin, Chlb  =  total  
chlorophyll b, and Zea = zeaxanthin. The (Fuco/Hexa)baseline is defined as the median of the Fuco/Hexa ratio 
across all 205 HPLC samples. We also applied the equations in Losa et al. (2017):

𝑓𝑓DiatL17 =
1.27Fuco
∑

DPw

if Chl 𝑎𝑎 ≥ 2mgm−3,� (3a)

𝑓𝑓DiatL17 =
1.27 (Fuco − Fuconano)

∑

DPw

if Chl 𝑎𝑎 𝑎 2mgm−3,� (3b)

where the weights for accessory pigments are the values from their global study: 𝐴𝐴
∑

DPw  = 1.27Fuco + 2.43Peri 
+ 1.07Hexa + 0.0Buta + 2.06Allo + 1.30Chlb + 2.36Zea, and the contribution of fucoxanthin to nanoplankton 
(Fuconano) in Equation 3b is defined in Losa et al. (2017) as:

𝑙𝑙𝑙𝑙𝑙𝑙10 Fuconano = 0.098 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙10 Hexa + 1.284 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙10 Buta.� (4)

Additionally, we tested the application of the CHEMTAX program (Mackey et al., 1996) to estimate the relative 
contribution of phytoplankton groups to total Chl a (Text S3 and Figures S2–S3 in Supporting Information S1).

To compare cell imagery- and pigment-based estimates of diatom biomass in units of mg C m −3, we calculated Chl 
a concentrations of diatoms by multiplying fDiat by Chl a, and then assumed a constant cellular carbon-to-chlo-
rophyll (C:Chl) ratio (Equation 5). Given that the C:Chl ratio varies (Behrenfeld et al., 2016; Jackson et al., 2017; 
Sathyendranath et al., 2009), we used mean, minimum, and maximum values of C:Chl for diatoms to calculate a 
range of possible values for pigment-derived diatom carbon (Cdiat_Pigments) as follows:

meanCdiat_Pigments
(

mgm−3) = �Diat ∗ Chl �
(

mgm−3) ∗ 41,� (5a)

minimumCdiat_Pigments
(

mgm−3) = �Diat ∗ Chl �
(

mgm−3) ∗ 15,� (5b)

maximumCdiat_Pigments
(

mgm−3) = �Diat ∗ Chl �
(

mgm−3) ∗ 107,� (5c)

where Chl a concentrations were obtained from HPLC analysis, and C:Chl values were reported in Sathyendranath 
et al. (2009). We applied Equation 5 to f Diat defined in both Equations 2 and 3.

To increase the number of matches between Cdiat_Pigments and Cdiat_IFCB, we estimated diatom biomass from Chl 
a measurements using the empirical relationships proposed by Hirata et  al.  (2011), Losa et  al.  (2017), and 
Soppa et al. (2014). All equations are provided in Table S1 in Supporting Information S1. Chl a concentrations 
were obtained from spectral particulate absorption measurements (Text S1 in Supporting Information S1), and 
converted results to units of carbon with the same C:Chl constants shown in Equation 5.

2.4.  Neural Network-Based Estimates of Diatom Carbon

Neural networks provide a tool to model complex relationships between a desired target quantity (here, diatom 
carbon) and multiple input parameters (here, temperature, salinity, and Chl a). We trained a shallow neural 
network model by using Cdiat_IFCB from the entire NAAMES02 cruise track (631 IFCB samples comprising 
209,261 diatom images collected between 11 May and 4 June 2016) as the target parameter (Text S4, Figure 
S4 in Supporting Information S1). Chl a, surface water temperature and surface salinity were provided as input 
parameters. These input parameters were chosen as they are significantly correlated with Cdiat_IFCB (Figure S5 in 
Supporting Information S1; see also Brun et al., 2015), and can be derived from remote sensing data.

To assess distributions of diatom carbon across the study area, two sections of the ship track that had relatively 
low cloud cover were chosen and denoted Scene 1 (39–45°N and 57–72°W) and Scene 2 (46–58°N and 36–56°W) 
(Figure 1a). The network model was applied to remote sensing data from the two scenes using satellite-based 
products for Chl a, temperature, and salinity (Text S5 in Supporting Information S1).
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3.  Results and Discussion
3.1.  Comparison of Pigment- and Cell Imagery-Derived Cdiat

Across the diverse environmental conditions sampled during the four NAAMES campaigns, values of Cdiat_Pigments 
were higher than Cdiat_IFCB regardless of the model used. The median bias value was 142%, which amounts to a 
median difference of 2.4 mg C m −3 for the model of Losa et al. (2017), and 138% and 0.9 mg C m −3 for the model 
of Hirata et al. (2011) (Figure 2a). This is likely explained in part by the presence of other fucoxanthin-containing 
phytoplankton groups including prymnesiophytes, silicoflagellates, and pelagophytes (Jeffrey & Vesk, 1997; Roy 
et  al.,  2011), as well as some dinoflagellate types (Yoon et  al.,  2002). Representatives of these groups were 
detected in the NAAMES IFCB samples across both the nano- and microphytoplankton size classes (Chase 
et al., 2020). The model of Losa et al. (2017) considers the fucoxanthin found in nanoplankton (Equations 3–4) 
and similarly Hirata et al. (2011) apply a method to correct the representation of diatoms using fucoxanthin by 
removing a portion of it as a function of Hexa. However, the discrepancy between cell imagery- and accessory 
pigment-based estimates of diatoms remains, and can likely be attributed to the approximations made when 
defining diatoms using simple accessory pigment ratios. The CHEMTAX model, a more complex application of 
accessory pigment ratios, also predicts higher diatom carbon concentrations compared to imagery-based results 
(Text S3 and Figures S2–S3 in Supporting Information S1). The degree of overestimation varies, depending on 
the initial pigment ratio and phytoplankton group inputs used in the CHEMTAX model. Initial pigment ratios and 
phytoplankton groups suggested by van de Poll et al. (2013) show the lowest deviation (Figure S3b in Supporting 
Information S1). We note that as the choice of phytoplankton groups and initial pigment ratios produces noticea-
bly different CHEMTAX results (Figures S2–S3 in Supporting Information S1), potential use of the CHEMTAX 
approach is best suited to scenarios where a priori knowledge of the phytoplankton communities exists.

Estimates of Chl a from IFCB imagery, in combination with conventional flow cytometry data, compare well 
with Chl a from HPLC for the NAAMES study (see figure 3a in Chase et al., 2020), but Cdiat_IFCB, could poten-
tially underestimate diatom carbon due to the 150 μm mesh at the sampling intake that prevents very large cells 
and chains of cells from entering the flow cell. However, some large chains do enter the instrument as they tend 
to orient themselves with their major axis parallel to the flow, and in the NAAMES data set, the major axis length 
of diatoms ranged between approximately 6 and 200 μm (Figure S9 in Supporting Information S1). Specifically, 
4.3% of all images classified as diatoms have a major axis length >150 μm. Although small nano-diatoms are 
often identifiable as diatoms in IFCB imagery due to their symmetrical shapes and rectangular cross-section, 
the IFCB does not comprehensively image particles smaller than approximately 6–9 μm (sensitive to instrument 

Figure 2.  (a) Diatom carbon estimated from IFCB imagery (x-axis; Section 2.2) and from accessory pigment-based methods (y-axis; Equations 2–5). Y-axis error bars 
show the range of possible values when converting from accessory pigment-based Chl a values to diatom carbon (Equation 5, Section 2.3). (b) Chl a versus diatom 
carbon estimated from IFCB imagery across all four NAAMES cruises (gray dots, n = 1,449), and using the equations in Table S1 in Supporting Information S1 
(colored lines). Shaded areas around the lines represent the range of values in diatom carbon with minimum and maximum C:Chl values applied (Section 2.3). Black 
line shows the fit described by Equation 6 of this study. Cdiat_IFCB error bars in both (a) and (b) represent the combined uncertainty in particle biovolume estimates, 
uncertainties in the conversion from cell volume to carbon, and statistical counting errors.
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settings), and thus they are excluded from our analysis. In some regions, small nanoplanktonic diatoms can 
contribute significantly to total particulate organic carbon, as has been shown in the Mediterranean Sea (up to 
26%; Leblanc et al., 2018). However, both global ocean and region-specific databases (e.g., the North Atlantic) 
suggest that small nano-diatoms (<5 μm) generally account for a low percentage of total diatom abundance in 
the open ocean (Leblanc et al., 2012, 2018). The potential underestimation of diatoms due to omission of the 
largest and smallest cells implies that at times and places when there are significant concentrations of the largest 
and smallest diatom cells, estimates based on the IFCB imagery may represent a lower bound in diatom carbon 
concentration.

3.2.  A Revised Empirical Model for Cdiat

Estimates of diatom carbon from published Chl a-based models (Table S1 in Supporting Information S1) were 
higher than those from IFCB imagery (Figure 2b). This is expected due to approximations made when using 
accessory pigments as a proxy for diatoms. Based on the NAAMES imagery and Chl a data, we propose a new 
empirical relationship between diatom carbon (𝐴𝐴 Cdiat ) and Chl a (both in units of mg m −3):

Cdiat = 1.5(±0.6) ∗ Chl 𝑎𝑎1.9(±0.3),� (6)

where coefficient uncertainty values are shown in parentheses. Uncertainties for the coefficients were calcu-
lated using a bootstrapping method, where the 1,449 data points used to derive the fit (Figure 2b) are iteratively 
subsampled (10,000 iterations; subsampled with replacement). The standard deviations of the results of this 
bootstrapping, for each of the two coefficients, are then defined as the uncertainty values. Equation 6 provides a 
relationship between Chl a and diatom carbon that is based on direct measurements of diatom concentrations and 
therefore may be more suitable for use than previously developed models that are solely based on relationships 
with accessory pigment. Equation 6, however, does not capture the variability observed in the imagery data as 
a function of Chl a concentrations (Figure 2b). It also indicates that while Chl a-based methods can provide a 
reasonable estimate of diatom carbon on average over an ocean basin, they have high uncertainty when predicting 
diatom biomass at any given time and location. This should be considered during application of any Chl a-based 
equation as a tool to assess diatom distributions.

3.3.  Diatom Carbon Models Applied to Remote Sensing Data

We applied three approaches to estimate diatom carbon (Equations  2, 5, 6; and the neural network model 
(Section 2.4)) from satellite data available for May 2016, and compared the resulting distribution maps. The 
application of Equations 2 and 5 results in overall higher diatom carbon concentrations compared to the other two 
approaches (Figures 3a and 4a). Diatom carbon concentrations derived from Equation 6 and the neural network 
model, both based on the IFCB cell imagery data, show a similar order of magnitude in diatom carbon but differ 
in their spatial patterns, notably with more (sub)mesoscale features highlighted in the results from the neural 
network model (Figures 3b and 3c, 4b and 4c). Comparison of in situ measurements to satellite-modeled diatom 
carbon in the highly dynamic North Atlantic region is challenging, as a result of changes in physical and biolog-
ical features on the timescale of hours to days and the need to use composite multi-day satellite data (Figures S8 
and S10 in Supporting Information S1). As with the application of any remote sensing algorithm, the ability of 
the satellite data to accurately represent in situ conditions is ultimately a limiting factor. More detailed analyses 
of satellite subpixel variability in regards to phytoplankton community composition are warranted.

In the western North Atlantic, relationships between diatom carbon and Chl a, temperature, and salinity are 
highly variable (Figure S4 in Supporting Information S1), precluding a simple and robust model for predicting 
diatom carbon at a given time and location within the region using these three inputs. However, our results 
demonstrate that further work with neural networks, which have previously shown promise (Palacz et al., 2013; 
Raitsos et al., 2008), could be beneficial to resolve finer spatial scale distributions of phytoplankton communities. 
In addition to the seasonal variability of the North Atlantic, there is high spatial variability in Chl a concentration, 
temperature, and salinity (Figures S6, S7 in Supporting Information S1). This underscores the need to better 
understand conditions and mechanisms determining diatom abundance in the North Atlantic, consistent with 
recent studies that highlight and work toward explaining the unexpected lack of large bloom-forming diatoms in 
the region (Behrenfeld et al., 2021; Bolaños et al., 2020).
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Figure 3.  Scene 1 diatom carbon estimated from satellite data, with in situ imagery-based data points from May 11 to 13, 2016 overlain. (a) Cdiat estimated using 
fDiatH11 from Hirata et al. (2011) (Equation 2) converted to units of carbon (mg m −3) (Equation 5). Cdiat mean, median, and SD are 19.9, 10.2, and 23.1 mg C m −3, 
respectively. (b) Cdiat estimated using Equation 6 of this study. Cdiat mean, median, and SD = 3.5, 1.5, and 6.7 mg C m −3, respectively. (c) Diatom carbon estimated 
with the three-parameter neural network model described in this study (Section 2.4). Cdiat mean, median, and SD = 5.6, 2.3, and 9.7 mg C m −3, respectively. Regions of 
missing data not seen in the other two panels are the result of neural network inputs from satellite data falling outside the range of in situ data used to train the neural 
network.
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Uncertainties must be accounted for, both in the data and in the model approach used. The average uncertainty 
in Cdiat using the neural network (Section 2.4; Figures 3c and 4c) is 65% (Text S4 in Supporting Information S1). 
This value takes into account the data used for developing the neural network model, and the accuracy of the 
model itself (Figure S4 in Supporting Information S1). Calculated uncertainties for the parameters in Equation 6 
and a description of their calculation are provided (Section 3.2). Previously published algorithms to estimate 
diatoms from Chl a report statistics of best fit lines, but not uncertainties based on data used in algorithm devel-
opment and/or in the uncertainty modeled fit parameters. We emphasize the need for defining and propagating 
uncertainties when estimating diatom and other phytoplankton group quantities from pigments both in situ and 
using remote sensing data and interpreting the observed patterns.

Figure 4.  Scene 2 diatom carbon estimated from satellite data. Panels as in Figure 3, but for the Scene 2 region with imagery-based in situ data from May 16 to 23, 
2016. (a) Cdiat mean, median, and SD are 16.6, 7.0, and 22.6 mg C m −3, respectively. (b) Cdiat mean, median, and SD = 4.1, 1.1, and 10.3 mg C m −3, respectively. (c) 
Cdiat mean, median, and SD = 6.5, 2.7, and 10.8 mg C m −3, respectively.
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4.  Conclusions
We provide here an updated model for estimating diatom carbon from Chl a, and highlight the need for inde-
pendent measurements of diatom biomass, which is critical to quantify and thus remove biases associated with 
different measurement types. Our results also illustrate the potential for combining satellite data from multi-
ple platforms in a neural network framework. The inclusion of ancillary environmental information such as 
water temperature and salinity can improve phytoplankton group modeling efforts (Figure S10 and Table S2 in 
Supporting Information S1; see also Brewin et al., 2019; Xi et al., 2021). Looking forward, the upcoming NASA 
Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission will include polarimetry and hyperspectral 
ocean color instruments that can potentially be combined with other remotely sensed or modeled data. Accessory 
phytoplankton pigments can be estimated from hyperspectral Rrs(λ) (Chase et al., 2017; Kramer et al., 2022), and 
this information could help constrain neural network results, as different major phytoplankton groups contain 
different accessory pigment assemblages. Estimating diatoms and other phytoplankton groups using remote sens-
ing techniques requires in situ data collected for validation, using a variety of methods, as well as critical attention 
to uncertainties and potential biases. The study presented here aims to address these needs while working toward 
the goal of phytoplankton community composition assessment from space.

Data Availability Statement
Data presented in this paper are available at the NASA SeaBASS repository (https://seabass.gsfc.nasa.gov/
naames; DOI: https://doi.org/10.5067/SeaBASS/NAAMES/DATA001). IFCB images are viewable on the 
EcoTaxa platform (https://ecotaxa.obs-vlfr.fr/) and image feature data following classification with the neural 
network are available at DOI: https://doi.org/10.5281/zenodo.6595852.
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