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Abstract 19 

Hot-spring fluids emanating from deep-sea vents hosted in unsedimented ultramafic and mafic rock commonly 20 

contain high concentrations of methane.  Multiple hypotheses have been proposed for the origin(s) of this me-21 

thane, ranging from synthesis via reduction of aqueous inorganic carbon (∑CO2) during active fluid circulation to 22 

leaching of methane-rich fluid inclusions from plutonic rocks of the oceanic crust.  To further resolve the pro-23 

cess(es) responsible for methane generation in these systems, we determined the relative abundances of several 24 

methane isotopologues (including 13CH3D, a “clumped” isotopologue containing two rare isotope substitutions) in 25 

hot-spring source fluids sampled from four geochemically-distinct hydrothermal vent fields (Rainbow, Von 26 

Damm, Lost City, and Lucky Strike).   27 

Apparent equilibrium temperatures retrieved from methane clumped isotopologue analyses average 310−42+53 °C, 28 

with no apparent relation to the wide range of fluid temperatures (96 to 370 °C) and chemical compositions (pH, 29 

[H2], [∑CO2], [CH4]) represented.  Combined with very similar bulk stable isotope ratios (13C/12C and D/H) of 30 

methane across the suite of hydrothermal fluids, all available geochemical and isotopic data suggest a common 31 

mechanism of methane generation at depth that is disconnected from active fluid circulation.  Attainment of equi-32 

librium amongst methane isotopologues at temperatures of ca. 270 to 360 °C is compatible with the thermody-33 

namically-favorable reduction of CO2 to CH4 at temperatures at or below ca. 400 °C under redox conditions char-34 

acterizing intrusive rocks derived from sub-ridge melts.  Collectively, the observations support a model where 35 

methane-rich aqueous fluids, known to be trapped in rocks of the oceanic lithosphere, are liberated from host 36 

rocks during hydrothermal circulation and perhaps represent the major source of methane venting with thermal 37 

waters at unsedimented hydrothermal fields.  The results also provide further evidence that water-rock reactions 38 

occurring at temperatures lower than 200 °C do not contribute significantly to the quantities of methane venting at 39 

mid-ocean ridge hot springs. 40 

 41 

Abstract: 292 words 42 

Main Text:  6608 words  43 

  44 
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1. INTRODUCTION 45 

Dissolved methane (CH4) is ubiquitous in hot-spring fluids emanating from submarine hydrothermal vents, and a 46 

potential carbon source for microbial communities living at and below the seafloor and in the water column.  47 

Constraining sources of carbon (C) and hydrogen (H) for the production of CH4, as well as the depths, tempera-48 

tures, and timescales at which CH4 is generated in these hydrothermal systems, is critical for understanding the 49 

origin of this form of hydrothermal carbon.  The abundance and isotopic composition of CH4 has been reported 50 

for fluids venting at unsedimented mid-ocean ridges and off-axis locations (e.g., Welhan, 1988b, Charlou et al., 51 

2002, McCollom and Seewald, 2007, Proskurowski et al., 2008, Cannat et al., 2010, Charlou et al., 2010, 52 

Proskurowski, 2010, McDermott, 2015, and McDermott et al., 2015).  In general, fluids that have interacted with 53 

ultramafic rock (peridotite and serpentinite) are enriched in CH4 by one or more orders of magnitude relative to 54 

fluids that have reacted with mafic rock (basalt and gabbro) (Keir, 2010), although there are exceptions where 55 

high-CH4 fluids emerge from mafic rock (Charlou et al., 2000).   56 

Several distinct geochemical processes have been proposed to account for the presence of abiotic CH4 in subma-57 

rine hydrothermal fluids.  Some have proposed that CH4 is formed by reduction of aqueous inorganic carbon (i.e., 58 

∑CO2) during convective circulation of seawater-derived hydrothermal fluids in response to the highly reducing 59 

conditions that result from alteration of ultramafic rock (serpentinization) (Charlou et al., 2002; Proskurowski et 60 

al., 2008).  Water-rock reactions during alteration of mafic rocks can also create sufficiently reducing conditions 61 

to reduce CO2 to CH4 without serpentinization (Shock, 1990; Seyfried and Ding, 1995), and is a possible source 62 

of the low but significant CH4 observed in mafic-hosted systems (Keir, 2010).  Others propose models involving 63 

entrapment and respeciation of mantle-derived CO2 to CH4 (and possibly to graphite) within plutonic (gabbroic) 64 

rocks of the oceanic crust (Kelley, 1996; Kelley, 1997; Kelley and Früh-Green, 1999), and subsequent extraction 65 

of the CH4-rich trapped fluids during hydrothermal circulation (McDermott et al., 2015).  Leaching of basalt-66 

hosted gas vesicles that contain CH4 may also be a source of CH4 in fluids venting at fast-spreading ridges such as 67 

the East Pacific Rise (Welhan and Craig, 1983; Welhan, 1988a).  68 

To constrain the origin of CH4 in unsedimented submarine hydrothermal systems, we determined the relative 69 

abundance of four of its stable isotopologues (12CH4, 13CH4, 12CH3D, and 13CH3D, a doubly-substituted or 70 

“clumped” isotopologue) in nine fluid samples collected from four hydrothermal vent fields: Rainbow (36°13'48" 71 

N, 33°54'09" W, Mid-Atlantic Ridge), Von Damm (18°22'36" N, 81°47'54" W, Mid-Cayman Rise), Lost City 72 

(30°07'24" N, 42°07'12" W, Mid-Atlantic Ridge), and Lucky Strike (37°17'30" N, 32°16'42" W, Mid-Atlantic 73 

Ridge).  These fields span a wide range of vent temperatures (96 to 370 °C), represent distinct geological settings, 74 

and are characterized by a wide range of fluid compositions.   75 

Data presented in this study provide constraints on the sources of C and H, as well as temperature(s) associated 76 

with the formation or equilibration of C–H bonds in CH4 carried by fluids of the hot-spring source.  Bulk carbon- 77 

and hydrogen-isotope ratios (13C/12C and D/H) encode signals related to the sources of C and H, respectively, as 78 

well as isotopic fractionations incurred during the synthesis of CH4.  Complementary to such information, meas-79 

urement of the CH4 clumped isotopologue 13CH3D provides an independent estimate of the temperature at which 80 

the C–H bonds in CH4 were formed or last equilibrated (Stolper et al., 2014; Wang et al., 2015).  Constraining the 81 

temperatures at which CH4 synthesis occurs within oceanic crust has direct implications for the distribution and 82 

availability of reduced carbon substrates and energy sources that may support a deep biosphere, as well as for the 83 

transfer of mantle-derived carbon to Earth’s surface.   84 
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Determination of temperatures from bulk carbon or hydrogen isotope ratios of CH4 alone requires knowledge of 85 

or assumptions regarding the isotopic composition of other species with which CH4 has exchanged atoms (e.g., 86 

CO2 or H2O).  In contrast, temperatures determined from the abundance of 13CH3D do not require information 87 

regarding such coexisting species.  Thus, clumped isotopologue data in conjunction with bulk 13C/12C and D/H 88 

isotope ratios of CH4 can be used to constrain the isotopic compositions of C- and H-bearing species associated 89 

with the CH4 source when independent constraints are unavailable.1  In the following discussion, we show how 90 

clumped isotopologue temperatures of CH4, together with bulk 13C/12C and D/H isotope ratios, fluid chemistry, 91 

and thermodynamic considerations, indicate that CH4 in unsedimented hydrothermal systems originates at tem-92 

peratures in excess of 270 °C and constrain possible environments of methane generation.  93 

2. METHODS 94 

2.1. Vent fluid samples 95 

The fluid samples studied herein were collected by ROV Jason II using isobaric gas-tight samplers (Seewald et 96 

al., 2002) during cruises to the Mid-Atlantic Ridge in 2008 (Reeves et al., 2014) and Mid-Cayman Rise in 2012 97 

(McDermott et al., 2015).  Subsamples of vent fluids extracted from the samplers were stored in pre-evacuated 98 

serum vials sealed with blue butyl rubber stoppers that were preconditioned by boiling in 2 M NaOH for 2–4 99 

hours and rinsed in deionized water.  When necessary, sample aliquots in multiple serum vials were combined 100 

(“pooled”) prior to purification to obtain enough CH4 for clumped isotopologue analysis (>1 cm3 SATP).  When 101 

possible, aliquots from the same fluid sampler were used.  In some cases, however, it was necessary to combine 102 

aliquots from duplicate samples collected in separate samplers deployed in the same hydrothermal fluid during a 103 

submersible dive (Table 1).  Due to the exceedingly low concentration of dissolved CH4 in ambient bottom sea-104 

water (<10−8 M, McDermott et al., 2015; Reeves et al., 2014) relative to concentrations in endmember vent fluids 105 

(samples regressed to zero Mg content) (Table 2), inadvertent entrainment of seawater during fluid collection has 106 

no measurable effect on the isotopic composition of CH4 derived from vent fluids that was measured in this study.  107 

2.2. Analytical techniques 108 

Samples of CH4 were purified via cryofocusing–preparative gas chromatography (Wang et al., 2015).  The rela-109 

tive abundances of the methane stable isotopologues 12CH4, 13CH4, 12CH3D, and 13CH3D were measured using a 110 

tunable infrared laser direct absorption spectroscopy technique described previously (Ono et al., 2014; Wang et 111 

al., 2015).  Due to the small amounts of CH4 (ca. 1 cm3 STP) in samples analyzed as part of this study, a cold trap 112 

system was employed to recover and recycle gas samples for re-analysis (Wang et al., 2015).  A set of samples for 113 

which isotopologue ratios had been previously determined was also re-measured using this recycling technique, to 114 

verify accuracy (Supplementary Table 1).   115 

The abundance of 13CH3D relative to a random distribution of isotopes among the isotopologues (stochastic distri-116 

bution) is tracked using the metric Δ13CH3D, which is defined as: Δ13CH3D = ln Q (or nearly equivalently, Q – 1), 117 

where Q is the reaction quotient of the isotope exchange reaction: 118 

 13CH4 + 12CH3D ⇌ 13CH3D + 12CH4.   (1) 119 

                                                      
1 This is analogous to using carbonate clumped isotope abundances to solve for the 18O/16O ratio of H2O from which the car-
bonate precipitated.  Readers are referred to Eiler (2007) for further information. 
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Values of Δ13CH3D > 0‰ are used to calculate apparent equilibrium temperatures (T13D) using the calibration of 120 

Wang et al. (2015), which is based on quantum chemical predictions for CH4 isotopologues in the gas phase and 121 

anchored by measurements of methane samples heated in the presence of platinum catalyst at temperatures be-122 

tween 150 and 400 °C (Wang et al., 2015).  123 

Bulk isotope values are reported herein using standard delta-notation, i.e., δ13C = (13C/12C)sample/(13C/12C)VPDB − 1, 124 

and δD = (D/H)sample/(D/H)VSMOW – 1.  The permil (‰) symbol represents multiplication by 10−3; hence, we have 125 

omitted the factor of 1000 commonly seen in definitions of δ and other isotope values.  The δ13C and δD values 126 

are calibrated against community reference gases NGS-1 and NGS-3 (Wang et al., 2015). 127 

3. RESULTS 128 

Results of stable carbon (13C/12C) and hydrogen (D/H) isotope ratio measurements are shown in Table 1.  These 129 

results are in general agreement with previously-published CH4 isotopic data for these samples or systems 130 

(Proskurowski et al., 2008; Charlou et al., 2010; Pester et al., 2012; McDermott et al., 2015).  For fluids for which 131 

direct comparisons to literature data are possible, the δ13C values of CH4 we report in Table 1 are typically <0.5‰ 132 

different from those previously published.  The largest deviation is a consistent 0.9‰ offset for all three samples 133 

from Von Damm compared to the published report of McDermott et al. (2015) that likely stems from a difference 134 

in calibration between the laboratories.  Data for δD are sparse, but the δD value shown in Table 1 for Beehive 135 

vent at Lost City is identical to that previously reported (−127 ± 6‰; Proskurowski et al., 2008).  136 

Similar isotopic values were observed across the different hydrothermal fields, ranging from −18‰ to −11‰ in 137 

δ13C and −127‰ to −98‰ in δD.  Variation between vents in the same field (generally <1‰ in both δ13C and δD) 138 

is significantly smaller than variation across different fields.  The consistency of stable isotope data of CH4 within 139 

each field is added evidence for the interpretations previously drawn of conservative mixing of CH4 between bot-140 

tom seawater and a single CH4-bearing endmember fluid at Rainbow (Charlou et al., 2002) and Von Damm 141 

(McDermott et al., 2015).  A common source fluid has also been suggested for Lucky Strike (Pester et al., 2012) 142 

and Lost City (Seyfried et al., 2015) based on the compositions of fluids there.   143 

Also shown in Table 1 are results of CH4 clumped isotopologue analyses.  All samples yielded values of Δ13CH3D 144 

> 0‰, from which apparent equilibrium temperatures can be derived (Fig. 1C and Table 1).  The unweighted 145 

mean of the Δ13CH3D values across all nine vent fluids studied is 1.57 ± 0.28‰ (standard deviation, 1s), corre-146 

sponding to a Δ13CH3D temperature of 310−42+53 °C (derived from projection of measured Δ13CH3D values onto the 147 

green curve in Fig. 1C).  Data for individual vent fluids are analytically indistinguishable from this narrow range 148 

(Fig. 2B).   149 

4. DISCUSSION 150 

4.1. Closure temperatures for hydrogen exchange amongst CH4, H2, and H2O in hydrothermal systems 151 

The narrow range of measured Δ13CH3D values (averaging 1.57 ± 0.28‰, 1s) and corresponding apparent equilib-152 

rium temperatures for Reaction 1 of 310−42+53 °C contrasts with the wide range of fluid temperatures (96 to 370°C) 153 

measured at the vents (Fig. 1, Table 2).  Had the methane in these samples attained isotopologue equilibrium at 154 

measured vent temperatures, Δ13CH3D values from 4.0 to 1.3‰ would be expected, respectively.  The observed 155 

range of clumped isotopologue data is much smaller than this predicted range (Fig. 1C), with Δ13CH3D tempera-156 
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tures generally equal to or higher than fluid temperatures (Fig. 2B).  The clumped isotopologue data indicate that 157 

the bulk of CH4 at the sites studied were either formed at or around 310 °C, or that CH4 was generated elsewhere 158 

in the hydrothermal system (perhaps at lower or higher temperatures) with subsequent establishment of equilibri-159 

um amongst the CH4 isotopologues at 270 to 360 °C.   160 

In addition to clumped isotopologues, bulk hydrogen isotope abundances also yield temperature constraints.  Iso-161 

topic exchange of D/H amongst H2O, H2, and CH4 can be described by the following equilibria: 162 

 CH4 + HDO ⇌ CH3D + H2O  (2) 163 

 H2 + HDO ⇌ HD + H2O (3) 164 

 CH3D + H2 ⇌ CH4 + HD (4) 165 

Each of these reactions is characterized by a temperature-dependent equilibrium constant, such that differences in 166 

the measured hydrogen isotopic ratios between CH4–H2O, H2–H2O, or H2–CH4 pairs can, in principle, be used to 167 

calculate apparent equilibrium temperatures for the respective reactions. Seafloor hydrothermal fluids have δD 168 

values of H2O very close to 0‰ (i.e., seawater; Shanks et al., 1995; see Supplementary Table 2), such that differ-169 

ences in calculated isotopic temperatures between samples are almost entirely due to variations in δD values of 170 

CH4 or H2. 171 

Equilibrium fractionation factors between dissolved H2 and CH4 and liquid H2O are shown in Fig. 3 (blue and red 172 

curves, respectively).  The fractionation factor for Reaction 3 (blue curves) was derived for each temperature by 173 

multiplying experimental fractionation factors for H2(g)/H2O(g) of either Suess (1949) (thin solid line), Cerrai et 174 

al. (1954) (thick solid line), or Bardo and Wolfsberg (1976) (dashed line), by that for H2O(g)/H2O(l) from Horita 175 

and Wesolowski’s (1994) calibration.2  The fractionation factor for Reaction 2 (red curves) was then obtained by 176 

multiplying the fractionation factors for Reaction 3 by the experimentally-calibrated CH4(g)/H2(g) fractionation 177 

factor from Horibe and Craig (1995).  Isotope effects of solvation were ignored because they are small (Muccitelli 178 

and Wen, 1978; Bacsik et al., 2002).   179 

Figure 3 shows a compilation of reported δD values of CH4 at hydrothermal vent fields free of sediment influence.  180 

All δD data of CH4 from endmember fluids cluster around −110‰ ± 12‰ (1s), and are consistent with CH4 hav-181 

ing approached hydrogen isotopic equilibrium with seawater-like H2O at temperatures in excess of 270 °C.  An 182 

upper temperature limit cannot be specified because of uncertainty in where the true D/H equilibrium fractiona-183 

tion between CH4 and H2O lies, and the low sensitivity of D/H thermometry of CH4–H2O (see Fig. 3).  Tempera-184 

tures derived from Δ13CH3D data are also in the range of 270 to 360 °C (shown by arrows), indicating that in sea-185 

floor hydrothermal systems, hydrogen exchange amongst CH4 isotopologues is accompanied by or proceeds 186 

through apparent hydrogen exchange between CH4 and H2O.  Stated another way, Reaction 1 probably does not 187 

proceed as an elementary reaction in nature.  Instead, Reaction 1 likely evolves towards a state of equilibrium in-188 

directly as a consequence of other isotope exchange reactions such as that between CH4 and H2O (Reaction 2).  189 

Reactions 1 and 2 therefore appear to proceed at similar rates, and closure temperatures3 for both reactions are 190 

                                                      
2 Rolston et al. (1976) performed an experimental calibration of H2(g)/H2O(l) from 0 to 100 °C.  The Rolston et al. curve is 
not shown in Fig. 3 because it covers only a portion of the temperature range of interest, but would plot very close to the 
dashed blue curve representing Bardo and Wolfsberg (1976) × Horita and Wesolowski (1994). 
3 The closure temperature is the temperature below which isotopic values become “frozen” over observable time.  Closure 
temperature is a function of cooling rate. 
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between 270 and 360 °C in hydrothermal systems.  Below the closure temperature, processes that break and form 191 

C–H bonds in CH4 are slower than rates characterizing subsurface cooling of hydrothermal fluids.   192 

Isotope data for H2 are also shown in Fig. 3.  Unlike for CH4, H2 is characterized by large spread in δD values 193 

across sites (−700‰ to −330‰).  Values for δD of H2 strongly vary with measured vent temperature, with 194 

endmember fluids plotting very near the equilibrium curves.  This indicates that H2 exchanges H with H2O at rates 195 

that keep pace with cooling of sub-seafloor fluids during ascent, and that the closure temperature for Reaction 3 is 196 

much lower than that for CH4–H2O.  An estimation based on data from low-temperature vents places the closure 197 

temperature for abiotic H2–H2O exchange between 70 and 110 °C (gray arrows), albeit with large uncertainty.  198 

Rapid metabolic cycling of H2 by microorganisms living at the vents may enable H2–H2O exchange to occur 199 

down to even lower temperatures (Proskurowski et al., 2006; Kawagucci et al., 2010).   200 

The data also yield constraints on the kinetics of H2–CH4 exchange (Reaction 4).  Figure 3 again shows that δD 201 

values of H2 plot very close to H2–H2O equilibrium while δD values of CH4 plot away from the CH4–H2O line 202 

below ~300 °C.  This indicates that the closure temperature for H2–CH4 exchange must be high, probably not 203 

much lower than 270 °C.  If H2–CH4 were to actually close at a low temperature (100 °C for example), δD values 204 

of CH4 would instead plot close to the red curves because CH4 would always be exchanging H with a population 205 

of H2 molecules that has a fixed δD value at each temperature (because of rapid exchange kinetics for H2–H2O 206 

and a near-infinite pool of H in H2O) shown by the blue curves.  Indeed, experiments conducted with gas-phase 207 

reactants between 25 and 400 °C show that rates for Reaction 3 (H2–H2O) are 20 to 100 times faster than that of 208 

Reaction 4 (H2–CH4) given identical partial pressures of H2 (Lécluse and Robert, 1994).  It is possible that the 209 

apparent exchange of hydrogen between CH4 and H2O at ~300 °C discussed in preceding paragraphs actually pro-210 

ceeds through H2 (i.e., both CH4 and H2O undergo D/H exchange with H2, while not interacting directly with each 211 

other).  If this is true, higher concentrations of H2 would not only result in faster rates of H2–CH4 exchange, but 212 

would also accelerate exchange between CH4 and H2O assuming rates of forward and backwards reactions in Re-213 

action 4 are first-order in both [H2] and [CH4].   214 

The temperature-dependence of D/H exchange rates between CH4, H2, and liquid H2O has been the subject of lim-215 

ited experimental study.  Figure 4 summarizes the available experimental constraints for H2–H2O and CH4–H2O 216 

exchange.  Experiments with H2 in the presence of liquid H2O showed no observable exchange over 40 days at 217 

26 °C (Campbell et al., 2009), but yielded half-exchange timescales as short as 10 min at 225 °C (Hall et al., 218 

1934; Lyon and Hulston, 1984).  (The 225 °C experiments were conducted in the presence of potentially-catalytic 219 

metal surfaces, and may therefore overestimate rates of exchange compared to nature.)  Lécluse and Robert 220 

(1994) reported second-order rate coefficients for isotope exchange between H2 and H2O in gas phase from 25 to 221 

435 °C.  To estimate exchange kinetics in liquid phase, we multiplied these second-order rate coefficients by the 222 

vapor pressure of pure H2O at each temperature, calculated at 1000 bar using a subroutine of the R package 223 

CHNOSZ (Dick et al., 2008) from data of Johnson et al. (1992) and Wagner and Pruß (2002).  The plotted rela-224 

tionship (the blue curve in Fig. 4) is consistent with calculations by Lin et al. (2005) who used data from the same 225 

study, but experimental investigation is necessary to confirm that the kinetics of exchange for H2 dissolved in wa-226 

ter are accurately represented.   227 

Experiments on exchange between CH4 and liquid H2O are even scarcer, but available data suggest that half-228 

exchange timescales are on the order of 10 to 100 years at 300 °C, and ~10,000 years at 240 °C (Fig. 4; Supple-229 

mentary Fig. 1; Koepp, 1978; Reeves et al., 2012).  These numbers have large uncertainties because data collected 230 

at very low extents of exchange must be extrapolated to obtain rate estimates.  It is also not known how factors 231 
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such as pH, redox state, minerals, or concentrations of sulfur, H2, or carbon species might affect hydrogen ex-232 

change rates.  Nevertheless, experiments and observations demonstrate that CH4–H2O exchange is at least several 233 

orders of magnitude slower than H2–H2O exchange.   234 

4.2. Constraints on the origin of methane at seafloor hot springs 235 

4.2.1. Evaluating potential microbial and thermogenic sources at unsedimented sites 236 

A remaining question is whether CH4 from the four vent fields we studied might be (i) thermogenic methane gen-237 

erated at >270 °C, or (ii) thermogenic or microbial methane generated during recharge at lower temperatures and 238 

later heated during hydrothermal circulation through deeper hotter root zones.  Bulk δD or Δ13CH3D data may not 239 

answer the second question since all C–H (and C–D) bonds rearrange upon heating to >270 °C, and thus C–H 240 

bonds of CH4 carry no information prior to heating above (and cooling below) ~270 °C.  However, other data help 241 

to exclude microbial and thermogenic sources as significant.  242 

Bulk δ13C values of CH4 fall within a relatively narrow range (−18‰ to −11‰) across fluids from all four un-243 

sedimented hydrothermal fields studied (Fig. 1A).  Because the four sites we studied lack appreciable sedimenta-244 

tion, sedimentary organic carbon from which thermogenic hydrocarbons can be generated is in scarce supply 245 

(Welhan, 1988b; Reeves et al., 2014).  Dissolved organic carbon in recharging seawater is a potential source of 246 

thermogenic methane, but can only account for ~40 µM (Sharp et al., 1995).  In contrast, production of thermo-247 

genic methane by decomposition of organic matter at elevated temperatures is well documented from sediment-248 

influenced vent sites such as Guaymas Basin (Welhan and Lupton, 1987; Simoneit et al., 1988) and Middle Val-249 

ley (Cruse and Seewald, 2006).  Methane from those sites are characterized by their low δ13C values (−40 to 250 

−55‰) and high C2+ alkane concentrations (typical C1/C2 ratios <300), which are very different from the unsedi-251 

mented fields (δ13C > −24‰ and C1/C2 >1000) (McCollom and Seewald, 2007).   252 

Methane from a CH4-rich (~60 mM; Reeves et al., 2014) endmember fluid venting at 299 °C in Guaymas Basin 253 

carried a Δ13CH3D temperature of 326−95+170 °C (95% confidence interval) (Wang et al., 2015).  This sample also 254 

had a δD value of CH4 (−106‰) that is again consistent with hydrogen isotope equilibrium at ca. 300 °C with wa-255 

ter of VSMOW-like composition (large yellow octagon in Fig. 5).4  The similarity in δD and Δ13CH3D values of 256 

CH4 between the sediment-influenced fluids and those from unsedimented fields, despite very different δ13C of 257 

CH4 (−44‰) and C2+ concentrations (McCollom and Seewald, 2007), suggests that at Guaymas Basin and other 258 

high-temperature sediment-influenced fields (Kawagucci et al., 2013; Douglas et al., 2017), hydrogen isotopes of 259 

CH4 have also been reset by exchange with H2O (and/or with H2).  We note that thermogenic natural gases gener-260 

ated at an early stage of kerogen maturation probably inherit C–H bonds from precursor organic molecules that 261 

have undergone hydrogen exchange with other organics (instead of with water) in water-poor source rocks prior 262 

to natural gas generation (Stolper et al., 2014; Wang, 2017).  The latter CH4 gases evolve towards apparent D/H 263 

equilibrium with water with increasing maturity (shown by the brown arrow in Fig. 5) (Clayton, 2003), perhaps 264 

by inheritance of H from methyl moieties that have previously exchanged with water (Hoering, 1984; Smith et al., 265 

1985; Lewan, 1997; Schimmelmann et al., 1999; Schimmelmann et al., 2001; Seewald, 2003; Lis et al., 2006; 266 

                                                      
4 Note added in revision: Methane clumped isotope data have now been reported from two additional seafloor hot-spring flu-
ids.  The samples are from the Main Endeavour field on the Juan de Fuca Ridge (Douglas et al., 2017).  These fluids have 
elevated concentrations of CH4 (millimolar) and low δ13C values (ca.  −50‰), indicating the presence of buried and heated 
sedimentary organic matter that contributes thermogenic CH4 (Lilley et al., 1993).  The CH4 is relatively enriched in deuteri-
um (ca. −100‰) and carry high clumped isotope temperatures (~300 to 360 °C).  These values are very similar to the Guay-
mas Basin sample from Wang et al. (2015) (see Fig. 5), providing additional evidence that apparent hydrogen-exchange oc-
curs in high-temperature fluids from sediment-influenced fields.   
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Schimmelmann et al., 2006; Reeves et al., 2012; Wang, 2017), or in the case of the hot Guaymas Basin fluids, 267 

possible direct exchange of hydrogen between CH4 and H2O.  268 

Microbial methane is generally characterized by low δ13C values (<−60‰) due to carbon isotope fractionation 269 

during microbial methanogenesis.  The methane δ13C data alone, however, do not unambiguously exclude contri-270 

butions of microbial methanogenesis, because high methane δ13C values could be a result of near-quantitative 271 

conversion of ∑CO2 to CH4, particularly under ∑CO2-limited conditions such as those present at Lost City 272 

(Brazelton et al., 2006; Bradley and Summons, 2010).  Moreover, Takai et al. (2008) reported that carbon isotope 273 

fractionation by methanogens utilizing ∑CO2 at >120 °C becomes very small (<12‰) under high H2 partial pres-274 

sure (150 bar), suggesting that microbially-derived CH4 might have similar δ13C values as those observed in un-275 

sedimented vent fluids (ca. 10 to 20‰ lower than seawater ∑CO2, Fig. 1A).  However, radiocarbon (14C) abun-276 

dances in CH4 from Lost City and Von Damm are very low [fraction modern (Fm) averaging 0.004–0.006, near 277 

the limit of detection (Fm ~ 0.003)] (Proskurowski et al., 2008; McDermott et al., 2015), whereas 14C contents of 278 

endmember ∑CO2 at Von Damm are ~5× higher (McDermott et al., 2015).  Had CH4 been derived from reduction 279 

of ∑CO2, the younger 14C age of the ∑CO2 would have been transferred to the CH4 product.  McDermott et al. 280 

(2015) further showed that ∑CO2 in the vent fluids at Von Damm is likely seawater-derived, because both con-281 

centrations and δ13C values of endmember ∑CO2 match those of local bottom seawater.  The conservation of 282 

∑CO2 during convective circulation at Von Damm excludes any process—microbial or otherwise—that converts 283 

∑CO2 in recharging seawater at Von Damm to CH4 despite high energetic favorability for CH4 synthesis at in situ 284 

conditions (Fig. 6D).  The similarity in isotopic data and C1/C2 concentration values across the multiple vent 285 

fields studied here suggests that processes responsible for CH4 generation at Von Damm are also occurring at the 286 

other unsedimented sites, even if the predominant influences on bulk fluid chemistry differ between sites.  There-287 

fore, the data described above support the idea that the endmember-derived CH4 in the studied hydrothermal flu-288 

ids is of dominantly abiotic origin (e.g., Charlou et al., 2002, McDermott et al., 2015, Proskurowski et al., 2008, 289 

and Welhan, 1988), and that the contribution of thermogenic or microbial processes to the CH4 content of the 290 

endmember source component of fluids venting at each site is limited or insignificant.   291 

4.2.2. High temperature origin of CH4 at Lost City 292 

The isotopologue data discussed above indicate that at Rainbow, Lucky Strike, Von Damm, and Lost City, CH4 293 

experienced temperatures in excess of 310−42+53 °C at least once in its lifetime.  The same processes responsible for 294 

the rupturing and healing of C–H bonds by which CH4 isotopologues attain equilibrium may also drive concentra-295 

tions of CH4 to thermodynamic equilibrium.  This is because the rate-limiting step for conversion of ∑CO2 296 

to/from CH4 in hydrothermal fluids is thought to be the conversion of methanol (CH3OH) to/from CH4 (i.e., the 297 

formation/breakage of C–H bonds in CH4) (Seewald et al., 2006; McCollom and Seewald, 2007; Reeves, 2010).  298 

Thus, Δ13CH3D and δD values of CH4 likely record the most recent temperature at which CH4 synthesis was both 299 

thermodynamically favorable and kinetically facile.  This means that either net synthesis of CH4 occurred at or 300 

above ca. 300 °C, or that CH4 already existed and re-equilibrated at this temperature under conditions where CH4 301 

synthesis would have proceeded had there been ∑CO2 available.   302 

The Δ13CH3D temperature of 270−68+104 °C we obtained for the Beehive vent fluid at Lost City argues for a much 303 

higher temperature of last exchange for the C–H bonds in methane than Proskurowski et al.’s (2006) suggestion 304 

of 110 to 150 °C. Their conclusion was based on hydrogen-isotope geothermometry of H2–CH4, and was prem-305 

ised on the assumption that δD values of H2 and CH4 in the Lost City vent fluids reflect isotope equilibrium be-306 

tween these species.  However, as discussed earlier, rapid H2–H2O equilibration at temperatures lower than the 307 
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closure (quench) temperatures for CH4–H2O or H2–CH4 exchange will shift δD values for H2 progressively lower, 308 

while δD values of CH4 remain unchanged.  The fact that apparent temperatures derived from H2–CH4 will always 309 

be close to that from H2–H2O is a coincidence that results from equilibrium δD values for CH4 being so poorly 310 

sensitive to temperature in comparison to those of H2 (Fig. 3).  Our Δ13CH3D data therefore suggest that at the 311 

most recent point at which CH4 at Lost City was at isotopic equilibrium, surrounding temperatures were in excess 312 

of 200 °C, an assertion that is also supported by the bulk δD values of CH4.  The high methane clumped isotopo-313 

logue temperature does not imply that the relatively cool fluids that vent at the surface today at Lost City experi-314 

enced such high temperatures, because CH4 may have been formed elsewhere and been entrained into cooler cir-315 

culating fluids prior to their ascent to the seafloor (see Sec. 4.2.3). 316 

4.2.3. A deep origin of methane disconnected from actively circulating fluids 317 

The reduction of ∑CO2 to CH4 under hydrothermal conditions can be described by:  318 

 CO2(aq) + 4H2(aq) ⇌ CH4(aq) + 2H2O(l)  (5) 319 

Reduction of CO2 is favored at temperatures below ~300 °C under redox conditions near the pyrite-pyrrhotite-320 

magnetite (PPM) redox buffer, which approximates typical conditions for hydrothermal vent systems (Fig. 2A) 321 

(Shock, 1992; Seyfried and Ding, 1995).  At sites with ultramafic rocks, reactions involved in the hydration of 322 

mafic minerals (serpentinization) can produce highly reducing conditions (H2 fugacity more than 100-fold higher 323 

than PPM, Fig. 2).  Serpentinization occurs at temperatures below 400 °C, where ferrous iron-bearing olivine and 324 

orthopyroxene minerals become unstable, with the highest H2 fugacities produced at temperatures of 300 to 325 

330 °C during serpentinization of peridotite under low water-to-rock ratios (Sleep et al., 2004; Klein et al., 2009; 326 

Klein et al., 2013).  This range of temperatures is generally consistent with the closure temperatures indicated by 327 

our Δ13CH3D data, suggesting that formation of CH4 probably did not occur at temperatures much higher than ca. 328 

400 °C (Fig. 2B).  However, while ∑CO2 reduction (Reaction 5) is thermodynamically favorable under conditions 329 

encountered at ultramafic-hosted vents (Fig. 6D), the rate of the reaction is slow even at high temperatures 330 

(~300 °C).  Numerous long-term experiments conducted between 177 and 325 °C with 13C-labeled ∑CO2 show 331 

that production of CH4 is kinetically-hindered in the absence of metal catalysts such as native iron (McCollom 332 

and Seewald, 2001; McCollom and Seewald, 2003; Seewald et al., 2006; Reeves, 2010; McCollom, 2016; 333 

Grozeva et al., 2017).  In most of these experiments, uncatalyzed rates of ∑CO2 conversion of less than a few per-334 

cent per year are observed.  Considering that estimated residence times of fluids in the high-temperature reaction 335 

zone (>200 °C) of several mid-ocean ridge systems is years to decades (Kadko, 1996; Fisher, 2003), reduction of 336 

∑CO2 to CH4 within actively-circulating hydrothermal fluids may be quite limited.  Indeed, the isotopic composi-337 

tion and abundance of aqueous carbon species at the Von Damm vent field indicate that ∑CO2 reduction to CH4 is 338 

not occurring on the timescale of convective hydrothermal circulation there (see Sec. 4.2.1 and McDermott et al., 339 

2015).  We suggest that CH4 in the hot-spring fluids studied here originates not within actively-circulating fluids, 340 

but instead formed elsewhere and was entrained into the fluids prior to venting, as was suggested for Von Damm 341 

by McDermott et al. (2015).  342 

Concentrations of CH4 for the four hydrothermal fields investigated in this study range from 0.86 to 2.81 mM 343 

(Fig. 6B).  Millimolar concentrations are typical of many ultramafic-hosted mid-ocean ridge hydrothermal fields, 344 

whereas basalt-hosted fields tend to have lower CH4 contents (~0.05 to 1 mM; McCollom and Seewald, 2007; 345 

Keir, 2010).  While CH4 concentrations vary less than four-fold (from 0.9 to 2.8 mM), the studied fluids show a 346 

wide range of pH (3.3 to 10.2), ∑CO2  (<0.2 to 110 mM) and H2 (0.03 to 18.2 mM) concentrations (Table 2).   347 
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The concentration of dissolved H2 is high and varies from 10.4 to 18.2 mM in endmember fluids from the Rain-348 

bow, Von Damm, and Lost City fields, whereas fluids from Lucky Strike have concentrations of H2 that are ap-349 

proximately three orders of magnitude lower (34–63 µM, Fig. 6A).  At Rainbow, Von Damm, and Lost City, ser-350 

pentinization of ultramafic rock in subsurface reaction zones (and concomitant H2 production) is thought to be a 351 

major control on fluid compositions (Kelley et al., 2001; Charlou et al., 2002; McDermott et al., 2015).  In con-352 

trast, the Lucky Strike field is hosted in mafic rocks, and vent fluids there encounter much more oxidizing condi-353 

tions (Charlou et al., 2000; Pester et al., 2012).  At Lucky Strike, synthesis of CH4 within the low-H2 endmember 354 

fluids is thermodynamically unfavorable at in situ temperatures (270–292 °C; Table 2 and Fig. 1B), and becomes 355 

even more unfavorable with increasing temperature (Fig. 1A).  In all other vent fluids studied here, a thermody-356 

namic drive for CH4 synthesis is present at varying magnitudes (Fig. 6D).  Thus, apparent decoupling of CH4 con-357 

centrations from thermodynamic drives dictated by vent fluid chemistry (∑CO2, H2 and pH) and temperature sug-358 

gests that CH4 is generated independently at depth, and that conditions under which CH4 forms are different from 359 

those observed at venting.  360 

Endmember fluids from Rainbow, Von Damm, and Lucky Strike contain 2 to 50 times as much total carbon as is 361 

in bottom seawater (~2.2 mM; McDermott et al., 2015; Reeves et al., 2014), such that ∑CO2 in recharging sea-362 

water cannot be the sole source of carbon to venting fluids.  The highly-alkaline Lost City fluid (pH 10.2) con-363 

tains very low amounts of ∑CO2 (<0.18 mmol/kg), the majority of which is likely derived from seawater entrain-364 

ment during sample collection (Reeves et al., 2014).  At Lost City, Proskurowski et al. (2008) suggested that CH4 365 

forms via ∑CO2 reduction within the circulating fluids.  This model is problematic because it requires the addition 366 

of mantle-derived CO2 to the fluid and immediate reduction to CH4 thereafter before ∑CO2 can be removed by 367 

carbonate precipitation. While sluggish kinetics characterize reduction of ∑CO2 to CH4, carbonate precipitation 368 

proceeds much more rapidly at temperatures experienced by the circulating fluids (Kelemen et al., 2011; Grozeva 369 

et al., 2017).  (We note that it is possible to generate CH4 directly from carbonate minerals, for example via hy-370 

drogenation reactions, as demonstrated by Giardini et al. (1968) and Yoshida et al. (1999), among others.  How-371 

ever, those experiments were carried out with metal (e.g., Co, Ni and Cu) carbonate, the reactions involved are 372 

remarkably slow below 400 °C, and their relevance to natural systems is doubtful.)  This difference in kinetics 373 

means that barring some unidentified catalytic process, ∑CO2 reduction within the circulating hydrothermal flu-374 

id—and particularly at the low temperatures postulated by Proskurowski et al. (2006)—does not explain the CH4 375 

venting from Lost City because  ∑CO2 reduction cannot occur in the absence of there being any ∑CO2 to reduce.  376 

The clumped isotopologue temperature obtained for the Lost City methane (270−68+104 °C) overlaps with or is 377 

slightly higher than temperature estimates from heat balance considerations, δ18O values, and alkane-alkene and 378 

mineral-fluid equilibria that all suggest that fluids beneath Lost City experienced temperatures as high as 200 to 379 

250 °C (Allen and Seyfried, 2004; Foustoukos et al., 2008; Reeves et al., 2012; Seyfried et al., 2015).  Agreement 380 

between temperatures derived from Δ13CH3D and these other geothermometers could be a matter of circumstance 381 

(e.g., if all have similar closure temperatures), however, and does not necessarily mean that CH4 formed and 382 

equilibrated its C–H bonds within the same fluids that the other equilibria are recording.  Instead, CH4 may have 383 

formed and attained isotopologue equilibrium independently of (outside) the circulating fluids, and later was en-384 

trained into them prior to venting.  For example, a component of the hydrothermal fluid may have percolated very 385 

deeply via meandering flow paths (Titarenko and McCaig, 2016), taking significantly longer to reach seafloor 386 

vents and seeing higher temperatures than the remainder of the vent fluid (Hasenclever et al., 2014).  If this near-387 

ly-stagnant “long-path” fluid was also CH4-laden, mixing of a minute proportion of this fluid with a CH4-poor 388 

“short-path” hydrothermal fluid could be the source of the up to millimolar quantities of CH4 emanating from sed-389 

iment-free seafloor vent systems.   390 



12 
 

Fluid inclusions record the widespread occurrence and composition of such a CH4-rich aqueous fluid within the 391 

sub-oceanic ridge lithosphere.  Kelley (1996; 1997) and Kelley and Früh-Green (1999) documented several types 392 

of volatile-rich inclusions hosted in plutonic rocks (gabbros) recovered from the slow-spreading Southwest Indian 393 

and Mid-Atlantic Ridges by several Ocean Drilling Program (ODP) expeditions.  They noted a common type of 394 

inclusion occurring along healed microcracks in plagioclase grains (i.e., secondary inclusions) that contained up 395 

to 47 mole percent CH4 (with balance of H2O), as well as possibly graphite and H2.  Temperatures indicated by 396 

CO2–CH4 carbon isotope geothermometry (300–600 °C) and homogenization temperatures of the Southwest Indi-397 

an Ridge fluid inclusions (350–370 °C, corresponding to entrapment at in situ temperatures of ca. 400 °C) (Kelley 398 

and Früh-Green, 1999) were interpreted to indicate formation of CH4 during re-speciation of trapped magmatic 399 

volatiles from CO2 to CH4 (± graphite) as the melt-derived host rocks cooled to below 400 °C at redox conditions 400 

near the FMQ buffer (fayalite-magnetite-quartz, Fig. 2A; Kelley, 1996).   401 

The δ13C values of CH4 in vent fluids from unsedimented fields (−24 to −6‰, Supplementary Fig. 2A; Keir, 402 

2010; McCollom and Seewald, 2007) are generally consistent with those determined by analyses of CH4 in the 403 

inclusions.  Values for inclusions can be somewhat lower (−34 to −20‰; Kelley and Früh-Green, 1999), probably 404 

due to contamination by relatively 13C-depleted thermogenic CH4 released from background carbon sources dur-405 

ing heating of samples to decrepitate the inclusions.  In both vent fluids and inclusions, CH4 is generally more 406 
13C-depleted than mantle-derived CO2 (−5‰; references in Fig. 1A caption).5  This presents a mass-balance issue 407 

because a 13C-enriched component is apparently missing.  Consistent with this, CH4/3He ratios in vent fluids (see 408 

Keir, 2010) indicate less-than-quantitative conversion (~0.2% to 50%) of mantle carbon to CH4 (assuming mantle 409 

C/3He is 1×109, Marty and Tolstikhin, 1998).  Precipitation of graphite from a CH4-rich fluid entrapped in pluton-410 

ic rocks may explain both the missing carbon (McDermott et al., 2015) and the observed δ13C values (Luque et 411 

al., 2012).  Graphite precipitation in trapped fluids, suggested by Kelley (1996) and others, is consistent with 412 

thermodynamic calculations that show that graphite can co-exist with CH4 at ca. 400 °C under H2O-poor condi-413 

tions and redox situated close to FMQ (French, 1966; Eugster and Skippen, 1967; Ohmoto and Kerrick, 1977; 414 

Holloway, 1984; Früh-Green et al., 2004).  415 

Concentrations of CH4 in the fluid inclusions (up to 47 mole percent) from the Southwest Indian Ridge and from 416 

other slow-spreading areas can be several orders of magnitude greater than those observed in corresponding vent 417 

fluids (on the order of 1 mmol/kg, or 0.002 mole percent) (Kelley, 1996; Kelley, 1997).  Mass-balance analysis 418 

indicates that extraction of CH4-rich fluids trapped in plutonic rocks can explain the observed CH4 concentrations 419 

at sediment-free mid-ocean ridge hydrothermal fields.  Mixing curves plotted in Fig. 7 show that addition of less 420 

than 0.1% of a CH4-rich fluid of similar composition to those indicated by the inclusions (10 mole percent; Fluid 421 

2 in the figure) to a CH4-poor circulating hydrothermal fluid (Fluid 1) is sufficient to match even the highest CH4 422 

concentrations seen in vent fluids.  Assuming carbon contents ranging from 30 to 300 ppm in the gabbro (Kelley 423 

and Früh-Green, 1999), water-to-rock ratios between 0.8 and 8 can explain CH4 concentrations of up to 424 

3 mmol/kg in vent fluids assuming all carbon in gabbro existed as leachable CH4.  These water-to-rock ratios are 425 

consistent with constraints from Li, Rb, and Sr, which indicate ratios <<10 in many mid-ocean ridge hydrothermal 426 

systems (Von Damm et al., 1985; Berndt et al., 1989); values of 0.4 to 6 and 2 to 4, respectively, were calculated 427 

at Von Damm and Lost City for instance (Foustoukos et al., 2008; McDermott, 2015). 428 

The above discussion shows that production of CH4 within actively-circulating hydrothermal fluids is unlikely to 429 

account for concentrations and isotopic signatures observed at several studied vent fields.  Instead, our data are 430 

                                                      
5 Supplementary Fig. 2B shows that δ13C values of CH4 and CO2 in seafloor vent fluids are not correlated.  This provides 
further evidence that CH4 does not derive from CO2 in actively-circulating fluids.   
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compatible with the idea that CH4-rich fluids trapped in plutonic rocks are liberated during convective hydrother-431 

mal circulation, and that the fluids that the CH4-rich inclusions represent could be the major source of CH4 in hot-432 

spring fluids at sediment-free oceanic spreading centers.  We speculate that these inclusions may have formed 433 

during reactions between magmatic volatiles and mafic minerals during incipient percolation of seawater into 434 

melt-derived rocks.  Available data do not allow us to determine whether direct leaching of the fluid inclusions 435 

themselves is the source of CH4 to endmember hot-spring fluids, or whether both the vent fluid CH4 and the fluids 436 

cached in the inclusions have a common source (i.e., the inclusions simply record a prior passage through plutonic 437 

rocks, via small fractures and/or mineral interstices, of the same slowly-moving CH4-laden parent fluid as those 438 

that contribute the CH4 venting today); both are possible and indeed likely.   439 

While only slow-spreading environments were investigated in this study, the same origin of CH4 might apply at 440 

sites on fast-spreading ridges such as the East Pacific Rise, particularly given the similar δ13C values for CH4 441 

(Welhan and Craig, 1983).   Concentrations of CH4 (and C2+) in vent fluids there tend to be lower relative to sites 442 

on slow-spreading ridges (Welhan, 1988b; Keir, 2010).  Differences in axial structure and tectonism may account 443 

for this pattern.  At magma-poor slow-spreading ridges, extension is accommodated primarily by detachment 444 

faulting, as opposed to magmatic emplacement of new crust that characterizes fast-spreading ridges (Buck et al., 445 

2005; Dunn, 2007).  Low-angle, large-offset, and long-lived (>1 Myr) normal faults near vent fields at slow-446 

spreading ridges allow for fluid penetration deep into plutonic rocks of layer 3, enabling access to fresh gabbroic 447 

material and/or inclusions to be leached (Kelley, 1996; Schroeder et al., 2002; Schlindwein and Schmid, 2016).  448 

In contrast, in fast spreading environments such as the East Pacific Rise, shallow melt lenses at 1 to 2 km below 449 

seafloor may limit the depth of circulation (e.g., Hasenclever et al., 2014, and references in Alt, 1995).  Lucky 450 

Strike, though hosted in mafic rock, is characterized by an unusually deep reaction zone (>3 km) and axial magma 451 

chamber, as well as deeply penetrating fault reflectors (e.g. Pester et al., 2012, Escartin et al., 2015 and references 452 

therein); thus, circulation there could lead to increased leaching of CH4 relative to mafic-hosted systems in faster-453 

spreading settings.  Efforts to define CH4 origin will benefit from rigorous interrogation of factors governing fluid 454 

flow and chemical kinetics in hydrothermally-influenced settings.   455 

5. CONCLUSIONS 456 

Measured abundances of methane isotopologues in fluids venting from diverse unsedimented mid-ocean ridge 457 

hydrothermal systems are highly uniform, and yield last equilibration temperatures of ca. 300 °C for the C–H 458 

bond.  Taken in combination with geochemical and geologic observations and reaction rates determined in exper-459 

iments, the Δ13CH3D data establish that abiotic reduction of ∑CO2 (via e.g., FTT synthesis) at low temperatures 460 

(<200 °C) is unlikely to be a significant source of methane over timescales characterizing convective hydrother-461 

mal circulation at oceanic spreading centers.  Apparent decoupling between methane isotopologue abundances 462 

and vent fluid chemistry points to a deep origin of CH4 that is disconnected from active hydrothermal circulation.  463 

We believe that the available data are best explained by a model where fluids rich in CH4 (up to tens of mole per-464 

cent) form within plutonic rocks during re-speciation of magmatic carbon trapped in fluid inclusions or interstitial 465 

spaces between mineral grains at temperatures at above 300 °C and under low water-to-rock ratios, and are later 466 

leached into circulating hydrothermal fluids.  Vent fluids with millimolar quantities of CH4 therefore represent 467 

mixing of a minute amount of a CH4-rich fluid with a large volume of an actively-circulating, CH4-poor fluid.  468 

Proportions of mixing may be determined by the relative access that circulating fluids have to magmatic volatile-469 

bearing rocks of the plutonic foundation.  Such a model could explain apparent relationships of CH4 concentration 470 

in vent fluids to tectonic setting and host rock lithology.  It also explains the apparent lack of correlation between 471 
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CH4 concentrations and thermodynamic drive for CH4 synthesis calculated for chemical compositions and tem-472 

peratures of the venting fluids.   473 

The new data also place constraints on the closure temperature of hydrogen exchange between methane and wa-474 

ter.  The observation of sluggish or indiscernible exchange of H among methane isotopologues below ca. 300 °C 475 

on timescales of ~102 years is relevant not only to the application of clumped isotope measurements as a novel 476 

geothermometer, but also provides information about the stability of the C–H bond in hydrocarbons in nature.  477 

Given the increasing appreciation of hydrocarbon-water-mineral interactions in economically important settings 478 

(Seewald, 2003), insights of this nature may find utility in studies of the origin and composition of aqueous and 479 

organic fluids in the Earth’s subsurface.  480 
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8. FIGURES780

781

Fig. 1. Comparison of (A) δ13C,782

(B) δD, and (C) Δ13CH3D values of 783

methane across vent sites. Data 784

and error bars (95% confidence 785

interval) are from Table 1.  In all 786

panels, data are plotted against 787

measured vent temperature (Table 788

2).  The isotopic compositions of 789

inorganic carbon (A) and hydrogen 790

(B) in seawater and in the mantle 791

are shown (Javoy et al., 1986; 792

Blank et al., 1993; Clog et al., 793

2013). In (C), the green line repre-794

sents the clumped isotopologue 795

composition at equilibrium.  The 796

Δ13CH3D temperature scale corre-797

sponds to the calibration from 798

Wang et al. (2015).799
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801

Fig. 2. Constraints on abiotic methane formation and stability from thermodynamics and clumped isotopologue802

data. (A) Plot of fugacity of H2 as a function of temperature at 500 bar, after Shock (1992). The red line repre-803

sents the fugacity of H2 at equilibrium, according to the reaction CO2(g) + 4H2(g) ⇌ CH4(g) + 2H2O(l), when the 804

fugacities of CH4 and CO2 are equal, and assuming unit activity for H2O(l).  Grey lines represent equilibrium H2805

fugacities buffered by the mineral assemblages hematite-magnetite (HM), pyrite-pyrrhotite-magnetite (PPM), fay-806

alite-magnetite-quartz (FMQ), and serpentine-magnetite-brucite (SBM). The curve for SBM is the is the low-Fe 807

serpentinite from Sleep et al. (2004), and is truncated above 400 °C where serpentinization is unlikely to occur808

(see Sec. 4.2.3). Red shaded area represents the intersection of regions corresponding to geologically-relevant H2809

fugacity and where CH4 is thermodynamically stable relative to CO2. The black bar represents the temperature 810

range over which our interpretation suggests that methane synthesis is both favorable and facile on timescales of 811

relevance to hydrothermal systems. (B) Clumped isotopologue temperatures of methane from studied vents (data812

and error bars from Table 1).  Equivalent Δ13CH3D values are plotted on the bottom axis, and are derived from the 813

calibration of Wang et al. (2015). The dotted line and gray hatching represent the mean ± 1s of the Δ13CH3D val-814

ues across all studied vents (1.57 ± 0.28‰, n = 9). The × symbols mark measured vent temperatures (Table 2).815
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816

Fig. 3. Hydrogen isotopic composition of CH4 (red) and H2 (blue) in seafloor hydrothermal fluids plotted against 817

measured vent temperatures.  Data are from unsedimented fields studied by Welhan and Craig (1983),818

Proskurowski et al. (2006), Kawagucci et al. (2010), Charlou et al. (2010), and us (see Tables 1 and 2), and are 819

tabulated in Supplementary Table 2.  Endmember fluids (identified by low Mg contents) are represented by stars, 820

and vent fluids containing a mixture of hydrothermal endmember fluid and seawater are represented by circles.  821

Data from sites exhibiting phase separation (Charlou et al., 2010) or with fluids diffusely effluxing through colo-822

nies of deep-sea snails or shrimp (Kawagucci et al., 2010) are excluded from this plot (see note f under Supple-823

mentary Table 2).  Red hatching indicates the average δD of CH4 in endmember fluids (−110 ± 12‰, 1s) in the 824

compiled dataset.  Red and blue curves represent the δD values of CH4 and H2 (respectively) in D/H equilibrium 825

with seawater-like H2O (δD = 0‰) calculated by combining published calibrations for H2(g)/H2O(g), 826

H2O(g)/H2O(l), and CH4(g)/H2(g) (see Sec. 4.1). Note that measured values for δD of H2O in fluids from Lost 827

City are +2 to +7‰ (Proskurowski et al., 2006) and thus the equilibrium values for CH4 and H2 at Lost City are 828

slightly (~5‰) higher than those indicated by the curves.  Gray arrows near bottom of plot bracket the probable 829

range of temperatures for closure of H2–H2O isotopic exchange.  The bar at top represents the mean ± 1s of meas-830

ured Δ13CH3D values and corresponding clumped isotopologue temperatures (310−42
+53 °C) reported in Table 1, 831

and black arrows point to the range of δD values of CH4(g) in equilibrium with seawater at the temperatures indi-832

cated by Δ13CH3D data.  At right is a histogram of the δD data.833
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834

Fig. 4. Half-exchange timescales (τ1/2 = ln(2) / k)835

for hydrogen exchange between CH4 & H2O (red 836

symbols) and H2 & H2O (blue) based on experi-837

ments done in the absence of added catalyst (Crist 838

and Dalin, 1933; Hall et al., 1934; Gould et al., 839

1934; Hulston, 1977; Koepp, 1978; Lyon and 840

Hulston, 1984; Lécluse and Robert, 1994; 841

Campbell et al., 2009; Reeves et al., 2012; Young 842

et al., 2017).  Reactions were assumed to be first 843

order in CH4 or H2.  For data points representing844

experiments for which rate constants were not re-845

ported or in which exchange was not observed, the 846

y-axis value is the duration of the experiment.  847

Downward- and upward-pointing triangles are, 848

respectively, maximum and minimum estimates of 849

the exchange timescale.  The τ1/2 for CH4–H2O ex-850

change from Reeves et al. (2012) comes from Sup-851

plementary Fig. 1.  Second-order rate coefficients 852

for H2–H2O exchange from Lécluse and Robert853

(1994) were converted to pseudo-first-order rate 854

coefficients by multiplying by the vapor pressure 855

of H2O calculated at temperatures T and a pressure 856

of 1 kbar (see Sec. 4.1).  Uncertainties in exchange 857

rates are difficult to estimate, but are probably sev-858

eral orders of magnitude.  Clumped isotopologue 859

temperatures for CH4 from the present study (red 860

hatched bar) and apparent temperatures from D/H 861

geothermometry of H2–H2O in endmember fluids 862

at the Lost City site (blue hatched bar) 863

(Proskurowski et al., 2006) are also shown. 864
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865

Fig. 5. Extents of (dis)equilibria in Reactions 1 and 2 in nature.  The parameter on the x-axis represents the hy-866

drogen-isotope fractionation between CH4 and H2O, and is defined: methane/water = (D/H)methane
(D/H)water

− 1 =867

δDmethane+1
δDwater+1

− 1.  Values of εmethane/water are identical to δD values of CH4 when δD of H2O is 0‰ (Fig. 3).  Large 868

symbols represent vent fluids from this study (symbols are the same as in Fig. 1), with the exception of the yellow 869

octagons, which represent previously-reported data on hydrothermal fluids influenced by sedimentary-sourced 870

thermogenic methane at Guaymas Basin (large octagon; Wang et al., 2015), and Main Endeavour field on the 871

Juan de Fuca Ridge (small octagons; Douglas et al., 2017).  Data shown as small circles are from Stolper et al.872

(2014), Inagaki et al. (2015), and Wang et al. (2015).  The Δ18 data from Stolper et al. (2014) and Douglas et al. 873

(2017) were converted to Δ13CH3D values (y-axis) following Wang (2017). Their position along the x-axis was874

estimated from literature data on δD of co-existing waters (either formation water or hot-spring water). Several 875

other papers (Stolper et al., 2015; Douglas et al., 2016) reported values of Δ18 paired with εmethane/water data.  These 876

are not shown because of an irresolvable uncertainty in the conversion from values of Δ18 that do not reflect equi-877

librium to values of Δ13CH3D (see Wang, 2017).878
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879

Fig. 6. Composition of vent fluids and energetics of methane synthesis in aqueous phase.  Concentrations of (A)880

H2, (B) CH4, and (C) ∑CO2 are plotted against measured vent temperatures (data from Table 2).  Also shown are 881

molar ratios of methane to ethane (C1/C2) in (B), and pH values of endmember fluids in (C). (D) Gibbs energy of 882

reaction for methane formation from CO2 and H2 in aqueous solution (Reaction 5), calculated at vent T and P883

conditions (ΔrG, Table 2).  Gray hatching represents thermodynamic equilibrium (taken as ΔrG = 0 ± 5 kJ/mol).  884

Methane formation in aqueous solution is thermodynamically favorable for points plotting below the hatched ar-885

ea. Symbol colors are the same as those in Fig. 1.886
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887

Fig. 7. Composition of fluids formed by mixing of a CH4-poor actively-circulating seawater-derived hydrother-888

mal fluid (Fluid 1) with a CH4-rich fluid such as those observed in inclusions in plutonic rocks on the Southwest 889

Indian Ridge and on the Mid-Atlantic Ridge (Fluid 2) (Kelley, 1996; Kelley, 1997; Kelley and Früh-Green,890

1999). Mixing curves are plotted for CH4 concentrations in the Fluid 1 endmember ranging from 1 to 891

100 µmol/kg (assumed values for background CH4 that is e.g., possible to be derived from complete thermal al-892

teration of dissolved organic matter in deep ocean water). Calculations assume that molalities of species other 893

than CH4 have a negligible effect on mole fractions in the high-CH4 fluid.  The black and white bars show CH4894

concentrations in vent fluids from this study (Table 2) and from mid-ocean ridge hydrothermal systems globally 895

(Keir, 2010).896
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9. TABLES 897 

 898 

Table 1 899 

Carbon and hydrogen isotope ratios and clumped isotopologue abundances of methane in studied hydrothermal fluids.   900 

Field Vent Sample(s) δ13C (‰) δD (‰) Δ13CH3D (‰) T13D (°C) 

Rainbow 

Guillaume J2-352-IGT4 −17.6 −97.7 0.95 ± 0.60 450 +298/−136 

CMSP&P J2-354-IGT3 −17.5 −97.8 1.50 ± 0.60 322 +142/−85 

Auberge J2-352-IGT3 −17.4 −97.9 1.73 ± 0.60 285 +114/−73 

Von Damm 

Old Man Treea J2-612-IGT6/-IGT8 −16.2 −107.4 1.71 ± 0.35 288 +60/−47 

Ravelin 1 J2-617-IGT6 −16.4 −106.6 1.56 ± 0.60 312 +134/−82 

East Summit J2-612-IGT2 −16.4 −106.5 1.35 ± 0.60 350 +167/−95 

Lost City Beehive J2-361-IGT5/-CGTWu −10.9 −126.6 1.84 ± 0.60 270 +104/−68 

Lucky Strike 
Medeaa J2-359-IGT2/-CGTY −14.2 −99.3 1.63 ± 0.40 301 +75/−55 

Isabela J2-357-IGT5/-CGTY −12.6 −100.4 1.85 ± 0.30 269 +45/−37  

 901 

Values for δ13C, δD, and Δ13CH3D are reported relative to Vienna Pee Dee Belemnite (VPDB), Vienna Standard Mean Ocean 902 

Water (VSMOW), and the stochastic distribution, respectively.  Analytical uncertainties for δ13C and δD are both ca. ±0.1‰ 903 

(95% confidence intervals).  Uncertainties listed for Δ13CH3D and T13D are 95% confidence intervals; the last digit in each 904 

(hundredths and ones places, respectively) is not significant. 905 

 906 
a Samples analyzed in duplicate.  Uncertainties listed are 2 s.e.m. (standard error of the mean) of the replicate measurements 907 

(n = 2).   908 

 909 

  910 
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Table 2 911 

Fluid compositionsa used in thermodynamic calculations and calculated Gibbs energy of reaction (ΔrG) for abiotic methane 912 

formation via Reaction 5 at studied vent sites.b   913 

Field Vent T (°C)c P (bar) pHd ∑CO2 (mm) H2 (mM) CH4 (mM) ΔrG (kJ/mol)e 

Rainbow 

Guillaume 361 230 3.33 24.3 16.5 2.13 −22 

CMSP&P 365 230 3.36 21.9 15.9 2.05 −16 

Auberge 370 230 3.35 22.8 15.7 2.16 −11 

Von Damm 

Old Man Treef 115 235 5.81 1.80 10.5 1.97 −121 

Ravelin 1f 145 235 5.83 2.52 13.4 2.02 −113 

East Summit 226 235 5.56 2.80 18.2 2.81 −83 

Lost City Beehive 96 70 10.20 0.18g 10.4 1.08 −85 

Lucky Strike 
Medea 270 170 3.81 98.0 0.063 0.89 +20 

Isabel 292 170 3.81 112.0 0.034 0.86 +45 

 914 

Analytical uncertainties (2s) are ±2 °C for T; ±5% for H2, ∑CO2, and CH4; and ±0.05 units for pH.  Abbreviations: mm, 915 

mmol/kg fluid; mM, mmol/L fluid. 916 

 917 
a All concentrations shown are extrapolated to endmember fluid composition (regressed to zero Mg content), except where 918 

noted.  Data are from McDermott et al. (2015) and Reeves et al. (2014).  919 
b For each vent fluid, the energetic favorability of methane formation was assessed by calculating the Gibbs energy of reac-920 

tion (ΔrG), defined by the relationship: ΔrG = RT ln(Q/K), where R is the universal gas constant, T is measured fluid tempera-921 

ture in kelvin, Q is the reaction quotient, and K is the equilibrium constant at T and seafloor pressure P.  Equilibrium con-922 

stants were calculated using thermodynamic data and standard states from Johnson et al. (1992) and Shock and Helgeson 923 

(1990).  For all calculations, the activity of H2O(l) was assumed to be unity.  Activity coefficients were assumed to be unity 924 

for neutral dissolved species.  For all fluids except for that from Lost City,g the concentration of CO2(aq) was assumed to be 925 

equal to ∑CO2, a reasonable approximation given the low measured shipboard pH values and calculated equilibrium specia-926 

tion of dissolved carbonate species at in-situ temperatures and seafloor pressures.   927 
c Maximum measured vent temperature.  928 
d Shipboard pH measurement (25 °C and 1 atm). 929 
e A negative value of ΔrG indicates a thermodynamic drive for the reaction to proceed as written from left to right (i.e., me-930 

thane formation favored).  Given uncertainties associated with chemical analyses and thermodynamic data, calculated ΔrG 931 

values within ±5 kJ/mol of zero are interpreted to indicate that the reaction has approached or attained a state of thermody-932 

namic equilibrium (Seewald, 2001).   933 
f Concentrations for the fluids from Old Man Tree and Ravelin 1 vents at Von Damm were not extrapolated to zero Mg.  934 

Consistent high magnesium contents in duplicate gas-tight samples (14.0 and 15.0 mmol/kg fluid, respectively) indicate that 935 

fluids of the hot-spring source had mixed with seawater near the surface prior to discharge (McDermott et al., 2015), so they 936 

are not true zero-Mg endmembers.  While CH4 concentrations are lower in these fluids than in the Mg-deficient fluid from 937 

East Summit, ratios of CH4 isotopologues did not change during subsurface mixing (Table 1).   938 
g An arbitrary CO2(aq) concentration of 1 nmol/kg was used in thermodynamic calculations for the Lost City fluid, similar to 939 

Reeves et al. (2014).  The actual concentration value is subject to substantial uncertainty due to difficulties in determining the 940 

near-zero endmember ∑CO2 content in vent fluids, given that some entrainment of ∑CO2-replete seawater always occurs 941 

during sampling (Proskurowski et al., 2008).  Varying this value by as much as ten orders of magnitude would not affect the 942 

conclusion that methane formation is thermodynamically favorable in the fluid, due to the high H2 content and the power of 4 943 

to which the activity of H2(aq) is raised in the mass action expression. 944 
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Supplementary Fig. 1. Experimental constraints on hydrogen exchange between CH4(aq) and H2O(l) from two 
experiments conducted by Reeves et al. (2012) in a flexible cell hydrothermal apparatus (gold-titanium oxide) at 
323 °C and 350 bar. Concentrations of CH4 (A) remain indistinguishable within analytical error (±5%, 2s) in Ex-
periments 1 and 2. In Experiment 1, hydrocarbon concentrations in the first timepoint (8 days, shown in gray)
were considered erroneously low, and can be excluded (see Reeves et al., 2012 for further details). Measured pH 
was ~4.2, and concentrations of H2 and ∑H2S were 0.26–0.7 mmol/kg fluid and ~11 mmol/kg fluid, respectively, 
consistent with predictions for a Fe–S–O–H aqueous fluid buffered by pyrite-pyrrhotite-magnetite (PPM) at ex-
perimental conditions (Reeves et al., 2012). Panel (B) shows measurements of D/H of CH4 compared against 
modeled kinetics for D/H exchange with varying half-exchange time (τ1/2 = ln(2) / k). The modeled kinetics as-
sume that CH4 concentration is constant, the rate of isotopic exchange is first order in CH4, and the equilibrium 
D/H fractionation factor [(D/H)methane/(D/H)water – 1] is −130‰ (see Figs. 3 and 5). We take τ1/2 = 24 yr (black 
curve) as a best-guess estimate of the rate of true isotopic exchange; this value is shown in Fig. 4.
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Supplementary Fig. 2. Carbon isotope data for CH4 plotted against (A) CH4 concentration and (B) δ13C of inor-
ganic carbon. Data from both sediment-influenced and unsedimented vent fields are shown. Data are from 
Charlou et al. (2000), Charlou et al. (2002), Cruse and Seewald (2006), Ishibashi et al. (1995), Charlou et al.
(1996), Ishibashi et al. (1994), Kawagucci et al. (2011), Kumagai et al. (2008), Merlivat et al. (1987), Lein et al.
(2000), Lilley et al. (1993), McDermott et al. (2015), Proskurowski et al. (2006), Proskurowski et al. (2008),
Reeves et al. (2014), McCollom (2008), Konno et al. (2006), Welhan and Craig (1983), Welhan and Lupton
(1987) and Evans et al. (1988). The curves in (B) are isotherms that represent carbon-isotopic equilibrium via the 
reaction: 12CH4(g) + 13CO2(g) ⇌ 13CH4(g) + 12CO2(g) (Horita, 2001).
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Supplementary Table 1 

Measurements of methane samples tested for QA/QC.  Each line in the table represents a ~1 cm3 SATP quantity of CH4 that 
was purified and analyzed in the same manner as the vent fluid samples reported in Table 1. 

Sample Sample(s) δ13C (‰) δD (‰) Δ13CH3D (‰) T13D (°C) 

AL1a 

PRAC-1 + PRAC-5c −35.0 −149.9 2.38 ± 0.29 207 +31/−27 

PRAC-2 + PRAC-3c −34.6 −147.1 2.16 ± 0.40 230 +51/−40 

PRAC-4 −33.8 −146.6 2.26 ± 0.26 220 +29/−25 

NGS-3b Hydrothermal Test −73.5 −176.2 5.33 ± 0.49 39 +18/−16 

 
Values for δ13C, δD, and Δ13CH3D are reported relative to Vienna Pee Dee Belemnite (VPDB), Vienna Standard Mean Ocean 
Water (VSMOW), and the stochastic distribution, respectively.  Analytical uncertainties for δ13C and δD are both ca. ±0.1‰ 
(95% confidence intervals).  Uncertainties listed for Δ13CH3D and T13D are 95% confidence intervals; the last digit in each 
(hundredths and ones places, respectively) is not significant. 
 
a Accepted values of δ13C, δD, Δ13CH3D, and T13D of AL1 are −34.5‰, −147.7‰, +2.41 ± 0.07‰, and 204 ± 7 °C (95% con-
fidence intervals), respectively (Wang, 2017).   
b NGS-3 was determined in triplicate by Wang et al. (2015).  The average of their reported values for δ13C, δD, Δ13CH3D, and 
T13D are −72.84 ± 0.08‰, −176.04 ± 0.23‰, +5.13 ± 0.06‰, and 46 ± 2 °C (95% confidence intervals), respectively.   
c These are small aliquots of AL1 (~0.2 to 0.8 cm3 SATP CH4) that were prepared in separate serum bottles and pooled dur-
ing purification prior to analysis.  This was done to verify that our pooling procedure maintains isotopic integrity. 
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Supplementary Table 2 

Compilation of hydrogen isotope ratios of CH4 and H2 and associated data on vent fluids from unsedimented hydrothermal systems.  

Field Venta Tmax 
(°C)b 

Mg 
(mM)c 

∑CO2 
(mm) 

H2 
(mM) 

CH4 
(mM) 

δ13C (‰)  δD (‰) Notes ∑CO2 CH4  CH4 H2 H2Od 

              
Mid-Atlantic Ridge             
Rainbow Guillaume (X4) 361 0* 24.3 16.5 2.13 — −17.6  −98 — — (1, 2) 
 CMSP&P 365 0* 21.9 15.9 2.05 — −17.5  −98 — — (1, 2) 
 Auberge (X3) 370 0* 22.8 15.7 2.16 — −17.4  −98 — — (1, 2) 
 — 365 0* 16 16 2.5 −3.2e −17.7  −105 −356 — (3) 
 — 360 0* 17 13 1.6 −2.5e −17.8  −107 −379 — (3) 
Lost City Beehive 94 0* 0.18 10.4 1.08 — −10.9  −127 — — (1, 2) 
  90 0* — — — — —  −127 −609 +2 to 7 (4) 
  90 0* — — — — —  −126 −609 +2 to 7 (4) 
 Marker 6 67 0* — — — — —  −108 −605 +2 to 7 (4); cf. Tmax 96 °C in ref. 2 
  62 0* — — — — —  −129 −616 +2 to 7 (4); cf. Tmax 96 °C in ref. 2 
 IMAX (IF) 55 — — — — — —  −129 −649 +2 to 7 (4) 
  55 — — — — — —  −139 −646 +2 to 7 (4) 
  55 — — — — — —  −136 −648 +2 to 7 (4) 
 Marker 7 28 — — — — — —  −129 −663 +2 to 7 (4) 
  28 — — — — — —  −125 −666 +2 to 7 (4) 
 Marker 8 43 — — — — — —  −141 −658 +2 to 7 (4) 
  43 — — — — — —  −136 −651 +2 to 7 (4) 
 Marker C 62 — — — — — —  −126 −620 +2 to 7 (4) 
  70 — — — — — —  −130 −614 +2 to 7 (4) 
 Marker H 60 — — — — — —  −99 −657 +2 to 7 (4) 
  60 — — — — — —  −104 −689 +2 to 7 (4) 
 Marker 3 61 — — — — — —  −112 −610 +2 to 7 (4) 
  71 — — — — — —  −103 −605 +2 to 7 (4) 
  73 — — — — — —  −125 −609 +2 to 7 (4) 
 — 93 0* — — — — −11.9  −130 −618 — (3) 
Broken Spur — 353 0* — — — — —  — −393 — (4)  
Logatchev — 350 0* — — — — —  −109 −372 — (4); Logatchev 1? 
Logatchev 1 — 346 0* 3.6 9 2.0 +4.1e −10.2  −104 −350 — (3)  
 — 352 0* 4.4 13 2.6 +7.4e −10.3  −104 −360 — (3)  
Logatchev 2 — 320 0* 6.2 11 1.2 +9.5e −6.1  −93 −231 — (3); phase-separatedf 

Ashadze 1 — 353 0* 3.7 8 0.5 +2.1e −12.3  −104 −333 — (3)  
 — 353 0* — 19 1.2 +4.6e −14.1  −101 −343 — (3)  
Ashadze 2 — 296 0* — 26 0.8 +0.2e −8.7  −107 −270 — (3); phase-separatedf 

Lucky Strike Medea 270 0* 98 0.063 0.89 — −14.2  −99 — — (1, 2) 
 Isabel 292 0* 112 0.034 0.86 — −12.6  −100 — — (1, 2) 
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Field Venta Tmax 
(°C)b 

Mg 
(mM)c 

∑CO2 
(mm) 

H2 
(mM) 

CH4 
(mM) 

δ13C (‰)  δD (‰) Notes ∑CO2 CH4  CH4 H2 H2Od 

              
East Pacific Rise             
9° N — 380 0* — — — — —  — −328 — (4) 
21° N Nat. Geo. Soc. 350 0* — 30.5 1.4 −7.0 −15.0  −102 −401 +0.5 (5, 6)  
              
Central Indian Ridge             
Kairei Kali 362 0* 8.0 3.3 0.12 −5.3 −9.8  — −368 — (7, 8)  
  316 8.4 12.1 3.6 — — —  — −328 — (7, 8)  
 Monju 299 5.2 7.9 2.1 — — —  — −385 — (7, 8)  
  42 50.9 9.3 8×10−4 — — —  — −431 — (7, 8)  
  87 43.7 6.0 0.69 — — —  — −361 — (7, 8); snail colonyf 

  22 48.3 12.6 0.13 — — —  — −493 — (7, 8); snail colonyf 

 Fugen 305 4.5 9.5 2.7 — — —  — −391 — (7, 8)  
 Daikoku (Marker 30) 306 0* — 2.2 — — —  — −340 — (7)  
 — 350 0* — — — — —  — −400 — (4) 
Edmond Nura Nura 375 0* 12.8 0.11 0.31 −5.5 −13.5  — −362 — (7, 8) 
 Marker 27 325 0* 12.3 0.10 — — —  — −377 — (7, 8)  
 White Head 263 12.4 8.1 0.04 — — —  — −412 — (7, 8)  
 Grand Shrimp Valley 281 13.4 12.1 0.48 — — —  — −681 — (7, 8); shrimp colonyf 

 Marker 24 116 40.6 8.7 0.07 — — —  — −476 — (7, 8)  
              
Mid-Cayman Rise             
Von Damm Old Man Tree 115 14.0 1.80 10.5 1.97 — −16.2  −107 — — (1, 9) 
 Ravelin 1 145 15.0 2.52 13.4 2.02 — −16.4  −107 — — (1, 9) 
 East Summit 226 0* 2.80 18.2 2.81 — −16.4  −107 — — (1, 9) 
              

 
Data sources: (1) this study; (2) Reeves et al. (2014); (3) Charlou et al. (2010); (4) Proskurowski et al. (2006); (5) Welhan and Craig (1983); (6) Horibe and Craig 
(1995); (7) Kawagucci et al. (2010); (8) Kumagai et al. (2008); (9) McDermott et al. (2015). 
 
Abbreviations: mm, mmol/kg fluid; mM, mmol/L fluid. 
 
a Dash (—) indicates that data were not reported or that samples were unable to be matched across multiple references. 
b Maximum measured vent temperature. 
c Asterisk (*) indicates near-endmember fluid sample (represented by stars in Fig. 4).  For these samples, concentrations of ∑CO2, H2, and CH4 and δ13C values 
of ∑CO2 have been extrapolated to endmember fluid composition (regressed to zero Mg content) assuming entrainment of seawater containing ~53 mM Mg.   
d Endmember vent fluids typically have δD values of H2O between −2 and +4‰ (Shanks et al., 1995).  A value of 0‰ was assumed when no data could be found 
(see text and Fig. 4).   
e Values are as reported; it is not known whether correction for ∑CO2 in seawater was applied. 
f Figure 4 excludes data from these fluids, which have either effluxed through macrofaunal colonies or are venting with atypically low salinity.  
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