Seismic imaging of magma sills beneath an ultramafic-hosted hydrothermal system

J. Pablo Canales¹, Robert A. Dunn², Ryuta Arai³, and Robert A. Sohn¹

¹Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
²Department of Geology and Geophysics, University of Hawaii at Manoa, Hawaii 96822, USA
³Research and Development Center for Earthquake and Tsunami, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan

ABSTRACT

Hydrothermal circulation at mid-ocean ridge volcanic segments extracts heat from crustal magma bodies. However, the heat source driving hydrothermal circulation in ultramafic outcrops, where mantle rocks are exhumed in low-magma supply environments, has remained enigmatic. Here we use a three-dimensional P-wave velocity model derived from active-source wide-angle refraction/reflection ocean bottom seismometer data and pre-stack depth-migrated images derived from multichannel seismic reflection data to investigate the internal structure of the Rainbow ultramafic massif, which is located in a non-transform discontinuity of the Mid-Atlantic Ridge. Seismic imaging reveals that the ultramafic rocks composing the Rainbow massif have been intruded by a large number of magmatic sills, distributed throughout the massif at depths of ~2–10 km. These sills, which appear to be at varying stages of crystallization, can supply the heat needed to drive high-temperature hydrothermal circulation, and thus
provide an explanation for the hydrothermal discharge observed in this ultramafic setting.

Our results demonstrate that high-temperature hydrothermal systems can be driven by heat from deep-sourced magma even in exhumed ultramafic lithosphere with very low magma supply.

INTRODUCTION

Exposures of mantle rocks are common along mid-ocean ridges spreading at slow to ultraslow rates (<55 mm/yr), especially in magma poor regions (e.g., Tucholke and Lin, 1994). Hydrothermal circulation at these sites produces serpentine via the reaction of seawater with ultramafic rocks (e.g., Allen and Seyfried, 2004), resulting in fluids enriched in H$_2$, CH$_4$, and other abiogenic hydrocarbons (e.g., Holm and Charlou, 2001). Where exit-fluid temperatures are low (<100 °C), hydrothermal circulation can be sustained by a combination of exothermic serpentinization and heat mined from hot lithosphere (e.g., Allen and Seyfried, 2004). However, a magmatic heat source is required to explain hydrothermal circulation at ultramafic sites where fluids exit the seafloor at high flow rates and elevated temperatures (>340 °C) and are enriched in CO$_2$ (Allen and Seyfried, 2004), despite these systems being located in settings away from neo-volcanic zones such as ridge-axis discontinuities (German et al., 1996), rift valley walls (e.g., Ondreas et al., 2012), and inside-corner highs (Okino et al., 2015). While magma systems beneath volcanic-hosted hydrothermal sites are well characterized (e.g., Singh et al., 1999), the heat sources that drive high-temperature hydrothermal systems in ultramafic settings have yet to be imaged. As a result, we have no *in situ* constraints on the geometry of the sub-surface circulation system, and an incomplete understanding of the relationship...
between lithospheric accretion, extension and hydrothermal processes in ultramafic
environments.

GEOLOGICAL SETTING

The Rainbow ultramafic massif is thought to be an oceanic core complex (OCC) formed by detachment faulting (Andreani et al., 2014) within a non-transform discontinuity (NTD) of the Mid-Atlantic Ridge (MAR, Fig. 1). The massif hosts the Rainbow hydrothermal field (RHF) (German et al., 1996), which vents fluids enriched in CH₄, H₂ and Fe (diagnostic of serpentinization (Holm and Charlou, 2001)) at high temperatures and flow rates (German et al., 2010), indicating that a magmatic heat source is present (Allen and Seyfried, 2004). However, the tectonized setting of the NTD lacks significant volcanic features (Andreani et al., 2014; Eason et al., 2016; Paulatto et al., 2015). The massif is largely covered by pelagic sediments, but basement outcrops expose predominately serpentinites, with sparse occurrence of plutonic rocks and basalts (Andreani et al., 2014). The presence of two inactive hydrothermal sites (Ghost City and Clamstone, Fig. 1B) is inferred from fossil evidence (Lartaud et al., 2010; Lartaud et al., 2011), but neither of them shows evidence of past high-temperature activity (Andreani et al., 2014).

NEW GEOPHYSICAL DATA AND METHODS

To understand how magmatic and tectonic processes give rise to high-temperature hydrothermal activity in an ultramafic setting we conducted a geophysical investigation of the Rainbow NTD and neighboring segments using shipboard acoustic and potential fields (Paulatto et al., 2015; Eason et al., 2016), and active-source seismic imaging. We used travel times of P-waves recorded by 43 ocean bottom seismometers (OBSs) (Fig.
1A) using an iterative technique to compute the three-dimensional (3-D) *P*-wave velocity

\(V_p \) structure (Dunn et al., 2005). The 3D tomography model was used to depth-migrate

2-D multichannel seismic (MCS) reflection data collected with an 8-km-long hydrophone
streamer along 21 profiles (Fig. 1). Details about the seismic modeling and processing are
given in the GSA Data Repository1.

RESULTS AND DISCUSSION

P-wave Velocity Structure

The 3D tomography model shows large *Vp* variations within the study area (Fig.

2A, B). The Rainbow massif is underlain by a cone-shaped core of high-*Vp* mantle
material that is elongated in the northeast-southwest direction (Fig. 2A, C). Above this
core, the flanks of the massif and adjacent nodal basins are characterized by layers of
low-to-moderately-low *Vp* (Fig. 2A, B) consistent with serpentinite or high-porosity
basalts. The lower velocities on the flanks of the massif are most likely associated with
highly serpentinized peridotites based on seafloor samples (Andreani et al., 2014).

Pre-Stack Depth-Migrated Images

Seismic reflection images reveal two primary types of events within the massif:

reflectors beneath both flanks of the massif that dip at 35–45° away from the area where
hydrothermal venting is clustered near the summit of the massif (Fig. 2D), and short, sub-
horizontal reflectors broadly distributed throughout the massif confined between the
northwest- and southeast-dipping reflectors (Fig. 2C, 3, 4A).

Nature of Dipping Reflectors

The dipping reflectors are associated with the boundaries between the high-*Vp*
core of the massif and the overlaying lower velocity layers (Fig. 2D). This indicates that
the high-V_p core is separated from the overlaying layers by sharp impedance contrasts

that may be produced by faulting, alteration, or lithological contacts. In cross-section the
dipping reflectors resemble normal faults (Fig. 2D), but their depth extent (~5 km below
seafloor, bsf below the adjacent nodal basin in some instances, Fig. 2D) would require
the presence of exposed faults scarps on both flanks of the massif with kilometer-scale
vertical throws. Because such scarps are not observed (Andreani et al., 2014; Paulatto et
al., 2015), the dipping reflectors most likely represent lithological contacts,
serpentinization fronts, or a combination of both. The cone-shaped high-V_p core forms an
inverted funnel that shoals beneath the southwest flank near the summit of the massif
where hydrothermal activity is clustered (Fig. 2A), indicating that hydrothermal outflow
zones may be to some extent controlled by the sub-seafloor lithological and alteration
structure.

Magma Sills Driving Ultramafic-Hosted Hydrothermal Circulation

The sub-horizontal reflectors occupy an area of ~4.6 km x 8 km (Fig. 1B, 4A), and are
distributed within a depth range from ~2–10 km bsf (the majority being at 3–6 km bsf,
Fig. 4B). Their appearance and geometry are very similar to that of melt lenses imaged in
young crust at other spreading centers (e.g., Marjanović et al., 2014; Nedimović et al.,
2005), leading to the conclusion that they represent magmatic sills. The majority of them
intrude material with V_p>7.5 km/s; this implies an ultramafic nature with little or no
alteration due to serpentinization (<15%, Fig. 4C). Only a few sills are imaged within
material with V_p = 6.8–7.3 km/s, which could either correspond to 20–40% serpentinite,
gabbros, or a mixture of both (Fig. 4C).
Our 3D Vp model does not have the resolution to resolve the small-scale structure of individual sills. However, the sills located closer to the RHF are, in general, of larger dimensions and have larger reflection amplitudes (relative to surrounding reflectivity) than those located farther away (Fig. 3). This, and the high temperature of the RHF fluids, thus suggests that the sills located beneath the vent field are most likely partially molten intrusions that provide the heat to drive hydrothermal circulation, while the rest of the sills are likely solidified. Our MCS data can image both partially molten and solidified intrusions because they are emplaced within a high Vp matrix, and thus generate a negative impedance contrast with their host rock (Fig. 2C, 4A, D). The presence of low-Vp sills may result in underestimation of the tomographically derived background Vp, but we quantify this effect to be no more than 0.2 km/s (see the GSA Data Repository¹).

Using previous estimates of heat flux and duration of hydrothermal activity at the RHF (see the GSA Data Repository¹), we find that the heat delivered by solidification of the imaged sills could cumulatively support high-temperature hydrothermal circulation for a period of ~1,600-3,000 years, which is ~7–30% of the total hydrothermal system lifespan (Cave et al., 2002; Kuznetsov et al., 2006). These estimates approximately double if additional heat released by crystallization of melt impregnating peridotites that is not accounted for in the seismically imaged sills is factored in (Table DR3). By comparison, high-temperature discharge at the longer-lived, volcanic-hosted TAG active hydrothermal field has been estimated to occur during only 1–2% of the system lifespan (Humphris and Cann, 2000). Our results thus suggest that the RHF has a greater time-averaged rate of hydrothermal discharge than the TAG field, which may explain why the
massive sulfide deposits at the RHF have structural and mineralogical characteristics comparable to those of the TAG field (Marques et al., 2007) despite being a younger system.

Sill Intrusions in the Upper Mantle at NTDs

The lateral dimensions of the sills (a few hundred meters up to ~1,400 m in length, with the majority being 200–400 m long, Fig. 4C) and the ultramafic nature of the host rock that they intrude presents a scenario similar to the Moho transition zone in ophiolites, where gabbroic sills that are tens to hundreds of meters long and 0.1-100 m thick intrude ultramafic host rock (Boudier et al., 1996; Kelemen and Aharonov, 1998). Small gabbroic bodies intruding ultramafic outcrops are also observed along other portions of the MAR (e.g., Dick et al., 2008), and if emplacement is rapid enough and sustained over sufficiently long periods of time then thick gabbroic crustal sections may be accreted (Grimes et al., 2008). At the Rainbow massif, however, the sills we image occupy 4.8-9.2 km3 (assuming a sill thickness of 80-150 m), which is only 1-2% of the volume of the exhumed ultramafic material (defined as material at depths less than 8 km bsf and with V_p>7.3 km/s). This suggests that sill emplacement at the Rainbow massif is slow compared to OCCs with large gabbroic cores (e.g., Grimes et al., 2008), perhaps because of its location within an axial discontinuity.

Exhumation of OCCs involves flexural rotation of the detachment footwall (Garcés and Gee, 2007). Our observation of sub-horizontal sills at the Rainbow massif thus implies that if the massif was exhumed along a detachment fault in a manner similar to that of other OCCs (Andreani et al., 2014), then the sills must have been emplaced after, or at the very end of, footwall rotation and exhumation. This interpretation is
consistent with the idea that exhumation of an OCC is terminated by magma emplacement into the footwall (MacLeod et al., 2009). Alternatively, if sill emplacement has occurred throughout the formation of the Rainbow massif, our observations indicate that the massif has not been significantly rotated during exhumation. This scenario could be possible if the massif was exhumed due to buoyancy forces resulting from the volume increase associated with serpentinization (O'Hanley, 1992). The tectonic setting of the Rainbow massif, being located within a NTD, could result in different deformation and exhumation mechanisms compared to OCCs formed at segment centers or inside corners, but we do not currently have enough information to address this hypothesis.

Our experiment did not resolve a potential low-\(V_p\) source region for the magmatic sills that intrude the massif, a region that is commonly observed beneath volcanic spreading segments (Dunn et al., 2000). The source region for the sills must thus either lie deeper than the region that our seismic tomography experiment can resolve (>8 km bsf), or be located within the neighboring spreading segments (German and Parson, 1998), thus requiring lateral magma propagation. The lack of a volcanic magnetization signature on the massif (Paulatto et al., 2015) argues against lateral emplacement of the sills, as do the sill depths (~3-6 km bsf), because dikes propagating laterally from a segment center into a NTD are predicted to shoal towards the segment end and breach the seafloor (Behn et al., 2006). The high-magnetization volcanic cones and ridges located at the ends of the neighboring segments (Paulatto et al., 2015) (Fig. 1B) probably mark the loci of maximum dike propagation along these segments. The most plausible magma source region is thus directly beneath the massif, with melt migrating vertically through the upper mantle into the NTD. Our results thus provide compelling evidence that deep-
sourced magma can intrude exhumed ultramafic lithosphere to drive hydrothermal circulation even in highly-tectonized regions with low, long-term magma supply.

ACKNOWLEDGMENTS

This research was funded by National Science Foundation (NSF) grants OCE-0961680 and OCE-0961151. We thank the RV M.G. Langseth’s Captain, crew, and technical staff, and the NSF-funded Ocean Bottom Seismograph Instrument Pool (OBSIP, http://www.obsip.org) managers and technical staff for their efforts, which made possible the success of cruise MGL1305. OBSIP data are archived at the IRIS Data Management Center (Incorporated Research Institutions for Seismology; http://www.iris.edu).

REFERENCES CITED

Ondreas, H., Cannat, M., Fouquet, Y., and Normand, A., 2012, Geological context and vents morphology of the ultramafic-hosted Ashadze hydrothermal areas (Mid-

FIGURE CAPTIONS

Figure 1. A: Regional bathymetry (Paulatto et al., 2015) and layout of the seismic experiment across the Rainbow non-transform discontinuity (NTD) and neighboring segments. Dashed white box shows location of maps shown in B and Figure 2A. White dots—ocean bottom seismometers (OBS); MCS—multichannel seismic. Inset shows location. B: Bathymetry of the Rainbow NTD. Labeled white lines are MCS profiles, black segments show locations where sills have been imaged. Triangles indicate
hydrothermal sites. Closed white contours locate areas of elevated seafloor magnetization (Paulatto et al., 2015).

Figure 2. A: Shaded topography of the Rainbow non-transform discontinuity (NTD) colored according to P-wave velocity variations relative to average of the study area (black line in B) at 1 km below seafloor. Circled numbers locate the one-dimensional P-wave velocity (V_p) profiles shown in B. Other symbols as in Figure 1B. B: V_p plotted against depth. C: Perspective views of the Rainbow massif and sub-seafloor seismic structure. Fence diagram shows sill reflectors beneath both the active Rainbow hydrothermal field (line 112) and the inactive Clamstone and Ghost City sites (line 114), highlighted in the zoomed-in panel. D: Line 110 shows prominent west- and east-dipping reflectors coincident with large lateral variations in seismic velocity. All seismic images show reflectivity overlaid on V_p relative to average (red-blue color scale as in A). White lines show the 7.3 ($\sim20\%$ serpentinization) and 7.9 km/s (fresh peridotite) iso-velocity contours. V.E.—vertical exaggeration.

Figure 3. Close-up views of sub-horizontal reflectors interpreted as sills across the southwest flank (line 108), center (112), and the northeast flank of the Rainbow massif (116). Dashed line locates the Rainbow hydrothermal field (RHF). V.E.—vertical exaggeration.

Figure 4. Distribution and characteristics of sills. A: Three-dimensional distribution of sills within the Rainbow massif shown against the relative P-wave velocity (V_p) along
profiles 106 and 119. Inverted triangle locates the Rainbow hydrothermal field (RHF).

V.E.—vertical exaggeration. B: Histogram shows the distribution of sill depth (bsf—
below seafloor). C: Histogram shows the distribution of sill length. D: V_p and inferred
degree of serpentinization at the locations of the imaged sills. Values <7.3 km/s may
 correspond to gabbro matrix or >20% serpentinized peridotite. Values >7.3 km/s
 correspond to ultramafic rocks that are <20% serpentinized.

GSA Data Repository item 2017xxx, containing additional information and images
about the geophysical dataset, tomography modeling and checkerboard tests, MCS
processing and interpretation, and details about calculations of the energy balance of the
Rainbow hydrothermal field, is available online at www.geosociety.org/pubs/ft2017.htm,
or on request from editing@geosociety.org.
Seismic Imaging of Magma Sills Beneath an Ultramafic-Hosted Hydrothermal System

J. Pablo Canales1, Robert A. Dunn2, Ryuta Arai3, and Robert A. Sohn1

1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.

2Department of Geology and Geophysics, University of Hawaii, Manoa, Hawaii, USA.

3Research and Development Center for Earthquake and Tsunami, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan.

OVERVIEW

This supplementary document contains additional information and images about the geophysical dataset, tomography modeling and checkerboard tests, MCS processing and interpretation, and details about calculations of the energy balance of the Rainbow hydrothermal field.

METHODS

Geophysical Dataset

The geophysical data were collected in April-May 2013 during the MARINER (Mid-Atlantic Ridge INtegrated Experiments at Rainbow) expedition onboard the R/V Marcus G. Langseth (cruise MGL1305). The experiment is centered on the Rainbow massif and extends 80 km in the ridge-parallel direction and 32 km across the ridge (Canales et al., 2013). The geophysical survey of the Rainbow area consisted of: (1) A large-scale 3D active-source seismic tomography experiment using 46 ocean bottom
seismometers (OBSs) and airgun sources. (2) Twenty-one 2D multichannel seismic (MCS) reflection profiles using one 8-km-long hydrophone streamer and airgun sources. (3) An ~8-month-long deployment of a network of 15 OBSs for long-term monitoring of the microseismicity of the Rainbow Massif and NTD. Analysis of this dataset is underway (Horning et al., 2015) and will be reported somewhere else. (4) Multibeam bathymetry and backscatter echosounding data, and underway potential fields (gravity and magnetics). These data and results from their analysis are reported in (Eason et al., 2016; Paulatto et al., 2015).

Three-Dimensional Traveltime Tomography From Wide-Angle Seismic Data

For three-dimensional (3D) refraction tomography, OBSs were placed within the study area with an average spacing of 7 km, but with increasing density toward the Rainbow massif (Fig. 1). A total of 46 OBSs were deployed and 43 provided full data sets. Each OBS contained a hydrophone and a 1- or 3-component geophone, and recorded at a sampling rate of 200 Hz. Approximately 3,800 airgun pulses were recorded by the OBS that were spaced every ~450 m along 26 seismic lines (Fig. 1). In addition, the airgun pulses of 21 MCS seismic lines (nominal source spacing of 37.5 m) were recorded by the inner 20 OBSs of the array. Seismic tomographic imaging was carried out using P-wave travel time data (~152,000 measurements) from both sets of seismic lines and an iterative technique that computes 3D velocity structure (Dunn, 2015; Dunn et al., 2005). Model parameters for isotropic velocity were spaced 0.5 km apart laterally, and vertically increased from 0.25 km at the seafloor to 1 km at 10 km depth; model parameters for azimuthal anisotropy were spaced 1 km laterally and increased from 0.5 km to 1 km from seafloor to 10 km depth. We constructed a 1D depth-varying starting model of P wave
velocities by laterally averaging the V_p model of (Dunn et al., 2005) for a nearby segment of the MAR. Then to obtain a stable 1-D starting model for the Rainbow area, we inverted all of the data using this starting model and solved for a 3D solution. The 3D anisotropic solution was then laterally averaged to create a new anisotropic 1D model, which was used as a starting model for a new 3D calculation. Several iterations were performed until the change in the 1D model from iteration-to-iteration was not significant. A grid search was performed by varying the strength of separate horizontal and vertical smoothness constraints on the tomographic image, to determine an acceptable range of 3D solutions that fit the data. Solutions with large smoothing values fit the data poorly. Very rough solutions also exhibit large data misfits and their velocity structures are too rough to be constrained by the data on the basis of the Fresnel zone of the seismic waves and checkerboard resolution tests. Models that best fit the data (chi-squared misfit ~1.0) occur over a small range of smoothness values and are very similar in appearance. Figure DR1 shows results of checkerboard resolution tests for vertical tomographic slices that pass through the Rainbow massif.

Two-Dimensional Multichannel Seismic Reflection Imaging.

Two-dimensional multichannel seismic (MCS) reflection data were collected across and along the Rainbow NTD and neighboring segments, comprising: seven NE-SW-oriented profiles ~82-97 km in length (Lines 101-107), six WNW-ESE-oriented profiles ~42-57 km in length (Lines 108, 110, 112, 114, 116, 118), six NW-SE-oriented profiles ~42 km in length (Lines 109, 111, 113, 115, 117, 119), and two auxiliary short profiles (Lines 122, 123) (Figs. 1, 2).
Acquisition parameters are given in Table DR1. MCS data processing consisted of 3 main stages: (1) processing of shot gathers to prepare the data for depth imaging, (2) pre-stack depth migration (PSDM) using as velocity model the long-wavelength V_p structure from the regional 3D tomography volume described above; and (3) post-migration image filtering and enhancement of low-frequency, laterally continuous reflectors for interpretation and display purposes. Detailed processing steps are listed in Table DR2. Figures DR2 and DR3 show the velocity model and pre- and post-enhancement PSDM images for two representative profiles (110 and 112, respectively).

Sill Identification, Picking, and Influence on Background V_p

Sill identification was done visually on each of the reflection sections. Reflectors within the Rainbow massif that have higher amplitudes than the background reflectivity, have waveforms characterized by a single or multiple peak-trough pairs, and are sub-horizontal or dip at low angle were interpreted as sills. We avoided interpreting as sills pronounced “smiles” that could be artifacts due to migration of off-plane seafloor scattering. Some of our interpreted sills have a moderate “smile” shape, which could be due to overmigration because of uncertainties in the velocity model, or a true geological shape, as concave-up or saucer-shaped magmatic sills are common in a variety of geological settings (e.g., Schofield et al., 2010; Thomson, 2007).

Picking of the sills was done using an automatic event-tracking algorithm following the negative (trough) amplitude of the waveform. Complex waveforms with multiple peak-trough pairs were interpreted as arising from multiple, closely stacked sills (e.g., Arnulf et al., 2014), and consequently stacked troughs were picked and assigned to
different sills. Figure DR4 shows an example of the interpretation and picking of sills along Line 112.

The presence of low-velocity sills should decrease the background V_p of the medium derived from the OBS data. We quantify this effect by using effective medium theory (Kuster and Toksöz, 1974). If the background medium is unaltered peridotite ($V_p=8$ km/s, $V_s=4.5$ km/s, density=3300 kg/m3), and the sills are fully molten basalt ($V_p=3.4$ km/s, $V_s=0$ km/s, density=2.7 kg/m3), 2% porosity (volume of sills relative to volume of material with $V_p>7.3$ km/s beneath the massif and above 8 km bsf) with aspect ratio (thickness/length) of 0.1 (as gabbroic sills in the Oman ophiolite Moho transition zone (Kelemen and Aharonov, 1998; Korenaga and Kelemen, 1997)) would produce an effective background V_p of 7.8 km/s. In the end-member case in which all of the sills are fully solidified gabbroic material ($V_p=7$ km/s, $V_s=3.9$ km/s, density=2900 kg/m3), the effective background V_p is 7.98 km/s, basically indistinguishable from unaltered peridotite.

Therefore, if all of the sills where completely molten, some of the velocities in the core of the massif where the sills are emplaced ($V_p=7.5$-8.0 km/s) could be due to the effect of the low-velocity sills and not serpentinization, as indicated in Fig. 4D. In this case, the sills would be intruding even less altered peridotite (<10% serpentinized), strengthening our conclusion that the vast majority of the sills are emplaced in mantle material. We find the scenario in which all of the imaged sills are completely molten unlikely because of the minor presence of basalts on the surface of the massif (Andreani et al., 2014), and because even in magmatically robust mid-ocean ridges like the East
Pacific Rise, only small portions of the axial melt lens contain large amounts of melts (Marjanović et al., 2015; Singh et al., 1998; Xu et al., 2014).

Energy Calculations

Parameters for the following calculations are given in Table DR3. The energy per unit volume released by full crystallization of magma sills as they cool from the liquidus \((T_L)\) to the solidus temperature \((T_S)\) is (Lowell, 2010):

\[
U_m = \rho_m c_m (T_L - T_S) + \rho_m L
\]

By computing the integrated volume of melt that all of the imaged sills could have stored \((V_m=4.9-9.2\times10^9 \text{ m}^3)\), for a range of sill thicknesses of 80-150 m (Benn et al., 1988; Boudier et al., 1996; Kelemen and Aharonov, 1998; Korenaga and Kelemen, 1997; Xu et al., 2014) and a circular plan-view geometry), we calculate the total energy released by crystallization of the sills \(E_m = 1.52-2.86\times10^{19} \text{ J}\).

We consider that the heat flux of the Rainbow hydrothermal system \(H=0.5 \text{ GW}\) (German et al., 2010) consists of three primary components (Lowell, 2010): heat transported by mantle upwelling \((H_M)\), heat produced by serpentinization \((H_{serp})\), and heat released by cooling of magmatic intrusions \((H_m)\). The heat flux per unit area transported by mantle upwelling at a slow-spreading ridge is estimated to be 1.8 \(MW \text{ km}^{-2}\) (Lowell, 2010), which for Rainbow yields a mantle heat flux \(H_M=0.186 \text{ GW}\), or 37% of the estimated total heat flux \(H\). To calculate \(H_{serp}\) we first make an estimation of the volume and mass of serpentine in the Rainbow massif based on the 3D \(Vp\) model. For velocity values between 5.0 and 7.9 km/s, we convert \(Vp\) to serpentine fraction \((\phi_{serp})\) using the relation (Miller and Christensen, 1997):
\[
\phi_{\text{serp}} = \frac{7.95 - V_p [\text{km/s}]}{2.88}
\]

\(V_p\) values >7.9 km/s are assumed to correspond to no serpentinization \((\phi_{\text{serp}} = 0)\), while \(V_p\) values <5.1 km/s are assumed to correspond to fully serpentinized material \((\phi_{\text{serp}} = 1)\) in which \(V_p\) is further decreased due to large-scale porosity and fracturing. This yields a volume of serpentine of 277.2-281.5 \(\text{km}^3\), corresponding to a mass of serpentine of 6.96-7.07\(\times10^{14}\) kg. The energy released by serpentinization is \(2.5\times10^5 J \text{kg}^{-1}\) (Fyfe and Lonsdale, 1981; Lowell, 2010), which yields an energy from serpentinization at Rainbow of \(E_{\text{serp}} = 1.74-1.77\times10^{20} J\), about 1.5 times of that estimated for the serpentinized Atlantis Massif (Früh-Green et al., 2003). Assuming that the massif has been being uplifted and serpentinized during the last 390,000 years, based on its location relative to the Brunhes-Matuyama magnetic reversal (Paulatto et al., 2015), we estimate a heat flux due to serpentinization of \(H_{\text{serp}} = 0.014 \text{ GW}\), or 3\% of the estimated total heat flux \(H\). From \(H_{\text{serp}}\) and \(H_{\text{M}}\) we then estimate that ~60\% of the total heat flux \(H\), or \(H_{\text{M}} = 0.3 \text{ GW}\), at Rainbow has a magmatic origin. From \(E_{\text{M}}\) and \(H_{\text{M}}\) we then estimate that the cumulative duration of magmatic intrusions at Rainbow capable of sustaining high-temperature hydrothermal activity is 1,613-3,022 years (Table DR3). This duration represents ~7–30\% of the total span of hydrothermal activity at Rainbow, which has been estimated to be between 10,000–23,000 years (Cave et al., 2002; Kuznetsov et al., 2006).

The above calculation does not account for the possibility of additional heat provided by crystallization of melt impregnating peridotites, which is observed in mantle rock samples from the MAR (Cannat et al., 1997; Takazawa et al., 2007). We repeat the above calculations taking into account the heat released by crystallization of melt impregnating peridotites. We assume that the proportion of this additional melt is 1-3\%.
of the volume of the massif because 1-3% is the proportion of seismically imaged sills relative to the volume of fresh-to-slightly altered mantle material ($V_p > 7.3$ km/s).

Factoring this additional melt, we find that magmatism at Rainbow could sustain high-temperature hydrothermal activity during 3,176-5,951 years (Table DR3), which is ~14-60% of system life.

<table>
<thead>
<tr>
<th>Table DR1. MCS Acquisition Parameters During Cruise MGL1305</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel</td>
</tr>
</tbody>
</table>
| Hydrophone streamer | Length: 8,000 m
Number of groups: 636
Group spacing: 12.5 m
Source to near channel: 210 m
Cable depth: 12 m |
| Sources | Number: 1
Number of sub-arrays: 4
Number of guns per sub-array: 9
Total volume: 108 L (6,600 in3)
Pressure: 137.9 bar (2000 psi)
Source interval: 37.5 m
Source depth: 12 m |
| Recording | Sampling interval: 2 ms
Record length: 12 s
Format: SEG-D |
Table DR2. MCS processing and depth imaging sequences

<table>
<thead>
<tr>
<th>Pre-migration data preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Conversion to SEG-Y format</td>
</tr>
<tr>
<td>– Geometry definition</td>
</tr>
<tr>
<td>– Despiking using the LIFT method (Choo et al., 2004) using a procedure similar to those described in (Aghaei et al., 2014; Han et al., 2016):</td>
</tr>
<tr>
<td>o Band-pass filtering: 1-6-100-125 Hz.</td>
</tr>
<tr>
<td>o Resampling at 4 ms.</td>
</tr>
<tr>
<td>o Separation of the wavefield in 3 frequency bands: low-pass filtered (15-20 Hz), high-pass filtered (20-25 Hz), and intermediate band by subtracting the low and high frequency components form the raw data.</td>
</tr>
<tr>
<td>o One-pass (i.e., without the signal-add-back step) despiking and f-k filtering of the low-frequency component.</td>
</tr>
<tr>
<td>o Two-pass despiking (i.e., with residual signal extracted from the noise component and added back after additional despiking) of the intermediate- and high-frequency components.</td>
</tr>
<tr>
<td>o Summation of the 3 despiked frequency components to form cleaned shot gathers.</td>
</tr>
<tr>
<td>– Spherical divergence correction.</td>
</tr>
<tr>
<td>– Surface-consistent amplitude balancing.</td>
</tr>
<tr>
<td>– Deconvolution of source signature.</td>
</tr>
<tr>
<td>– Sorting in common-mid-point (CMP) gathers.</td>
</tr>
<tr>
<td>– Bottom mute starting just above the primary sea-surface multiple.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-stack depth migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Definition of velocity model:</td>
</tr>
<tr>
<td>o Extract Vp from the 3D isotropic regional tomography volume along the CMP locations.</td>
</tr>
<tr>
<td>o Apply anisotropy correction based on the profile azimuth.</td>
</tr>
<tr>
<td>o Resample at 5 m in depth.</td>
</tr>
<tr>
<td>– Decomposition of the wavefield in plane waves and depth imaging using a wave-equation, finite-difference f-x pre-stack migration of each plane wave (Sourabas, 1996).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post-migration image enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Long-wavelength-pass filter (200-83 m).</td>
</tr>
<tr>
<td>– f-k enhancement of flat or dipping events.</td>
</tr>
<tr>
<td>– Laterally running mean filter.</td>
</tr>
<tr>
<td>– Depth-dependent gain.</td>
</tr>
</tbody>
</table>
Table DR3. Parameters used in, and results of energy calculations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Rainbow massif</td>
<td>390,000 yr</td>
<td>(Paulatto et al., 2015)</td>
<td></td>
</tr>
<tr>
<td>Duration of hydrothermal activity</td>
<td>10,000-23,000 yr</td>
<td>(Cave et al., 2002; Kuznetsov et al., 2006)</td>
<td></td>
</tr>
<tr>
<td>Duration of sill solidification-driven high-T hydrothermal activity</td>
<td>(a) 1,613-3,022 yr (b) 3,176-5,951 yr</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Area covered by Rainbow massif</td>
<td>103.23 km²</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Sill thickness</td>
<td>80-150 m</td>
<td>(Boudier et al., 1996; Kelemen and Aharonov, 1998; Korenaga and Kelemen, 1997; Xu et al., 2014)</td>
<td></td>
</tr>
<tr>
<td>Volume of seismically imaged magma sills</td>
<td>4.9-9.2×10⁹ m³</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Density of magma</td>
<td>2700 kg m⁻³</td>
<td>(Hooft and Detrick, 1993)</td>
<td></td>
</tr>
<tr>
<td>Density of serpentine</td>
<td>2510 kg m⁻³</td>
<td>(Miller and Christensen, 1997)</td>
<td></td>
</tr>
<tr>
<td>Heat flux through high-T fluids</td>
<td>0.5 GW</td>
<td>(German et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>Heat flux from mantle upwelling</td>
<td>0.186 GW</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Heat flux from magma crystallization</td>
<td>0.300 GW</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Heat flux from serpentinization</td>
<td>0.014 GW</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Energy per unit volume released by cooling of magma</td>
<td>3.12×10⁹ J m⁻³</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Energy released by cooling of magma</td>
<td>(a) 1.52-2.86×10¹⁹ J (b) 3.00-5.63×10¹⁹ J</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Energy released by serpentinization</td>
<td>1.74-1.77×10¹⁹ J</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Specific heat of basaltic magma</td>
<td>1400 J kg⁻¹ K⁻¹</td>
<td>(Liu and Lowell, 2011)</td>
<td></td>
</tr>
<tr>
<td>Liquidus temperature</td>
<td>1200 °C</td>
<td>(Lowell, 2010)</td>
<td></td>
</tr>
<tr>
<td>Solidus temperature</td>
<td>860 °C</td>
<td>(Coogan et al., 2001)</td>
<td></td>
</tr>
<tr>
<td>Latent heat of crystallization</td>
<td>6.8×10⁵ J kg⁻¹</td>
<td>(Fukuyama, 1985)</td>
<td></td>
</tr>
</tbody>
</table>

(a) Assuming no additional melt impregnating peridotites.
(b) Assuming 1-3% of additional melt impregnating peridotites.
Fig. DR1. Checkerboard reconstructions illustrating the resolving power of the tomography experiment. The reconstructions used the same ray paths, matrix of partial derivatives (weighted by data uncertainties), and regularization constraints as for the solution shown in the main text. The result is shown for the first iteration of the forward and inverse problem; subsequent iterations improve the magnitudes of the checkers, but not their form. Vertical cross sections are shown for locations along the centerline of the long-axis of the experiment (SW-NEW direction, Fig. 1) for (A), 2x2x2 km3 and (B), 4x4x4 km3 size anomalies. Overall, the best resolution occurs within the station bounds and above 8 km depth. Target checkerboard tests with the depth range of 8-10 km (not shown), where only ~2000 rays sample in total, found only large scale features can be detected (>10 km), but not without significant smearing and distortion. The Rainbow hydrothermal field is located at 0 km distance along the horizontal axis.
Fig. DR2. (A) Velocity model used for PSDM of Line 110. (B) PSDM image of Line 110. (C) Filtered and enhanced PSDM image of Line 110.
Fig. DR3. Same as Fig. DR2 for Line 112. RHF: Rainbow hydrothermal field.
Fig. DR4. Portion of MCS reflection profile Line 112 illustrating the identification and picking of reflectors interpreted as sills (yellow lines in bottom panel).
Supplementary References

Liu, L., and Lowell, R. P., 2011, Modeling heat transfer from a convecting, crystallizing, replenished silicic magma chamber at an oceanic spreading center: Geochemistry, Geophysics, Geosystems, v. 12, no. 9, p. Q09010.

