Fluid-induced breakdown of white mica controls nitrogen transfer during fluid-rock interaction in subduction zones

Ralf Halama¹,*; Gray E. Bebout²; Horst R. Marschall³,⁴; Timm John⁵

¹ School of Geography, Geology and the Environment, Keele University, Keele, ST5 5BG, United Kingdom
² Department of Earth and Environmental Sciences, Lehigh University, 1 West Packer Avenue, Bethlehem, Pennsylvania 18015, USA
³ Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USA
⁴ Goethe-Universität Frankfurt, Institut für Geowissenschaften, Altenhöferallee 1, 60348 Frankfurt am Main, Germany
⁵ Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany

* Corresponding author contact information:

Ralf Halama
School of Geography, Geology and the Environment
Keele University, Keele, ST5 5BG, United Kingdom
E-mail: r.halama@keele.ac.uk
Tel: +44-1782-734960

Word count: 6310
Abstract

In order to determine the effects of fluid-rock interaction on nitrogen elemental and isotopic systematics in high-pressure metamorphic rocks, we investigated three different profiles representing three distinct scenarios of metasomatic overprinting. A profile from the Chinese Tianshan (ultra)high pressure – low temperature metamorphic belt represents a prograde, fluid-induced blueschist-eclogite transformation. This profile shows a systematic decrease in N concentrations from the host blueschist (~26 µg/g) via a blueschist-eclogite transition zone (19-23 µg/g) and an eclogitic selvage (12-16 µg/g) towards the former fluid pathway. Eclogites and blueschists show only a small variation in $\delta^{15}N_{atm}$ (+2.1±0.3‰), but the systematic trend with distance is consistent with a batch devolatilization process. A second profile from the Tianshan represents a retrograde eclogite-blueschist transition. It shows increasing, but more scattered N concentrations from the eclogite towards the blueschist and an unsystematic variation in $\delta^{15}N$ values ($\delta^{15}N = +1.0$ to $+5.4$‰). A third profile from the high-$P/T$ metamorphic basement complex of the Southern Armorican Massif (Vendée, France) comprises a sequence from an eclogite lens via retrogressed eclogite and amphibolite into metasedimentary country rock gneisses. Metasedimentary gneisses have high N contents (14-52 µg/g) and positive $\delta^{15}N$ values (+2.9 to +5.8‰), and N concentrations become lower away from the contact with 11-24 µg/g for the amphibolites, 10-14 µg/g for the retrogressed eclogite, and 2.1-3.6 µg/g for the pristine eclogite, which also has the lightest N isotopic compositions ($\delta^{15}N = +2.1$ to +3.6‰).

Overall, geochemical correlations demonstrate that phengitic white mica is the major host of N in metamorphosed mafic rocks. During fluid-induced metamorphic overprint, both abundances and isotopic composition of N are controlled by the stability and presence of white mica. Phengite breakdown in high-$P/T$ metamorphic rocks can liberate significant amounts of N into the fluid. Due to the sensitivity of the N isotope system to a sedimentary signature, it can be used to trace the extent of N transport during metasomatic processes. The Vendée profile demonstrates that this process occurs over several tens of meters and affects both N concentrations and N isotopic compositions.

Keywords: Nitrogen, N isotopes, white mica, fluid-rock interaction, subduction, high-pressure metamorphic rocks
1. Introduction

Understanding the processes that affect both elemental concentrations as well as isotopic signatures in subducting rocks are of fundamental importance for the assessment of subduction zone cycling of elements (e.g., Bebout 2007, 2014; Marschall et al. 2007a; Halama et al. 2011; John et al. 2004, 2011; Spandler and Pirard 2013; Konrad-Schmolke and Halama 2014; Bebout and Penniston-Dorland 2016). Elemental and isotopic fractionation during subduction-zone metamorphism and metasomatism influences the balance of input and output in subduction zones and the geochemical signatures transported into the deep mantle beyond the arc, potentially resurfacing via plume-related magmatism. Metamorphic rock sequences that record the successive advance of a metamorphic/metasomatic process provide a valuable means to evaluate the magnitude and extent of geochemical effects via fluid-rock interaction during subduction cycling.

The nitrogen (N) isotope system has a great potential as geochemical tracer for crustal and volatile recycling due to the large isotopic differences in the various terrestrial reservoirs (Busigny and Bebout 2013; Halama et al. 2014; Johnson and Goldblatt 2015; Bebout et al. 2016; Mikhail and Howell 2016). Nitrogen is a sensitive tracer for fluid-rock interaction and metasomatic processes (Bebout 1997; Halama et al. 2010; Li et al. 2014), in particular for sediment-derived fluids because N is largely fixed by organic processes in sedimentary environments (Bebout 1997; Bebout et al. 2016). However, direct evidence of spatially constrained transport of N is rare, and the processes that cause N mobilization and fractionation of N isotopes need to be better understood. It has been established for some metasedimentary suites that N contents decrease and $\delta^{15}$N values increase with increasing metamorphic grade during subduction (Bebout and Fogel 1992; Mingram and Bräuer 2001). However, other suites show relatively little change and N appears to be retained to depths approaching those beneath arcs (Busigny et al. 2003; Pitcairn et al. 2005). Similarly, metamorphosed mafic and ultramafic rocks appear to largely retain N to depths of at least 60-70 km (Halama et al. 2010, 2012; Busigny et al. 2011).

In this study, we use spatially constrained profiles of metamorphosed mafic igneous rocks that represent the frozen-in advance of fluid-induced metamorphic/metasomatic processes to investigate the behaviour of N and N isotopes during prograde and retrograde metamorphic changes. Three profiles were selected that represent i) a prograde transformation of blueschist into eclogite due to fluid ingress from a major fluid conduit (Beinlich et al. 2010; John et al. 2012), ii) a retrograde transformation of eclogite into blueschist during exhumation within a subduction channel (van der Straaten et al. 2012), and iii) an exhumation-related interaction of an eclogite body with surrounding felsic gneisses in a collisional context. The first two sample sequences come from the
south-eastern Tianshan (China) high-pressure low-temperature (HP-LT) belt, whereas the third profile is from the Variscan Belt in the Vendée (France). We find that prograde dehydration can release large amounts of N due to the breakdown of white mica, in which N is incorporated as ammonium (NH$_4^+$), whereas the associated isotopic changes are relatively small (< 1‰). Hence, non-altered eclogites should largely reflect the N isotopic composition of their protoliths. In contrast, interaction with retrograde fluids can impart the N elemental and isotopic characteristics of the rocks with which the fluid equilibrated and hence cause significant perturbations of the N systematics.

2. Geologic setting and sample description

2.1. Tianshan orogen, (ultra)high-pressure low-temperature ((U)HP-LT) metamorphic belt, China

Two profiles were sampled in a (U)HP-LT belt of metamorphic rocks in the Chinese part of the Tianshan orogen (Figure 1a). The Tianshan orogen extends morphologically over 2500 km from north-western China in the east over Kyrgyzstan and Kazakhstan to Tajikistan and Uzbekistan in the west along the south-western margin of the Central Asian Orogenic Belt, also known as the Altai Tectonic Collage (e.g., Şengör et al. 1993). In China, the western Tianshan, which includes the (U)HP metamorphic terrane, is situated between the Junggar plate in the north and the Tarim plate in the south (Gao et al. 2009 and references therein). The HP-LT rocks are interpreted as relics of the Palaeozoic South Tianshan Ocean basin and whole rock geochemical data of the mafic rocks show oceanic basalt affinities including former seamounts and young arcs, subducted during Silurian and Carboniferous time (Windley et al. 1990; Şengör and Natalin 1996; Gao et al. 1998; Gao and Klemd 2003; John et al. 2008). The (U)HP–LT metamorphic terrane comprises predominantly metasediments, which form the host rocks of mafic metavolcanic rocks, metavolcaniclastics, marbles, and ultramafic rocks, and is considered to represent a tectonic mélange formed within an accretionary wedge-like setting on the southern margin of the Central Tianshan Arc terrane during the subduction of the South Tianshan Ocean (e.g., Gao et al. 1999; van der Straaten et al. 2008; Klemd et al. 2011). The mafic metavolcanic rocks (mainly eclogites locally interlayered with blueschists) occur irregularly distributed as differently sized pods, boudins, thin layers or large massive blocks embedded in voluminous metasedimentary host rocks or less abundant surrounded by metavolcaniclastic rocks (Gao and Klemd 2003). Blueschist occurrences...
include prograde and retrograde varieties (Gao and Klemd 2001; Gao et al. 2007; van der Straaten et al. 2008, 2012; Beinlich et al. 2010). Peak-metamorphic conditions of most eclogites and prograde blueschists are similar (both lithologies occur locally with gradual transitions or intimately intercalated) and range between 480 and 580 °C at 1.4–2.3 GPa at a regional scale (e.g., Klemd et al. 2002; John et al. 2008). Moreover, relics of UHP conditions (e.g. coesite inclusions in garnet) or thermodynamic modelling suggesting UHP conditions for both metasediments and eclogites have been reported with peak P–T conditions of 570–630 °C at 2.7–3.3 GPa for eclogite-facies mica schists and 470–510 °C at 2.4–2.7 GPa for eclogites from several localities (Lü et al. 2008, 2009; Wei et al. 2009; Tian and Wei 2013). The juxtaposition of UHP and HP eclogite-facies rocks juxtaposed on a meter scale is thought to reflect mixing of eclogite-facies rock from different depths at the plate interface in a subduction channel-like setting (van der Straaten et al. 2008; Lü et al. 2009; Klemd et al. 2011). The timing of peak metamorphic conditions was determined by garnet growth ages of ca. 315 Ma based on multi-point Lu-Hf isochron ages for both blueschists and eclogites from various locations within the (U)HP-LT belt (Klemd et al. 2011). High-pressure veins crosscutting a blueschist wall-rock formed contemporaneously at 317 ± 5 Ma (Rb-Sr) which is consistent with metamorphic fluid release due to prograde transformations of blueschists to eclogites (John et al. 2012). U-Pb SIMS ages of metamorphic zircon rims in eclogites are indistinguishable within error at 319 ± 3 Ma (Su et al. 2010). The post-peak cooling was dated by white mica geochronology (K-Ar, Ar-Ar, Rb-Sr) and gave ages between 310 and 311 Ma (Klemd et al. 2005).

For the profiles, drill cores with a diameter of 2.54 cm and a length of about 10-15 cm were taken to obtain a good spatial resolution. At both sample localities, the samples occur as loose, meter-sized blocks, which have fallen from the steep mountain slopes as rock falls. The blocks represent a mixture of various rock types that are now found within and partly covered by quaternary deposits.

Profile 1 (JTS sequence; Figure 2a) represents the prograde transformation of blueschist into eclogite due to fluid infiltration. The JTS sequence was studied in detail by Beinlich et al. (2010) and John et al. (2012), and the following summary is based on these works. The massive blueschist with the main mineral assemblage garnet + glaucophane + omphacite + phengite + quartz is cross-cut by a carbonate-quartz vein, which is surrounded by an eclogitic reaction halo mainly composed of omphacite and garnet. The vein represents a major former fluid pathway that shows fluid infiltration from an external source and dehydration of the immediate wall rock. Important petrographic observations of the fluid-induced eclogitization include replacement of sodic amphibole by omphacitic clinopyroxene, increase in the modal abundances of quartz and carbonate.
and decrease in the modal abundance of white mica with decreasing distance to the vein. The successive breakdown of white mica towards the vein is responsible for a relative depletion in large-ion lithophile elements (LILE: K, Rb, and Cs) in the eclogitic selvage compared to the host blueschist. Enrichments in Ca, Pb and Sr and depletions in HFSE can also be attributed to the fluid-induced eclogitization.

Profile 2 (FTS 9-1 sequence; Figure 2b) represents a gradual retrograde transition from eclogite to blueschist caused by fluid-rock interaction during uplift in the subduction channel (van der Straaten et al. 2008, 2012). The following description is based on the petrologic-geochemical investigation by van der Straaten et al. (2012) on these samples. The eclogitic parts consist of a fine-grained omphacite matrix with accessory rutile and porphyroblasts of garnet. The fluid-induced blueschist-facies overprint caused replacement of the eclogite-facies assemblage by newly formed glauconaphane, paragonite, chlorite, calcite and titanite. The increase in the modal amounts of glauconaphane, white mica and calcite with increasing blueschist-facies overprint lead to a nearly complete replacement of omphacite in the glauconaphane schist.

2.2. Les Essarts Unit, Variscan Belt, Vendée, France

Samples were taken along a ~100 m long profile from an approximately 1 km thick eclogite lens via retrogressed eclogite and amphibolite into surrounding metasedimentary gneiss in the quarry “La Gerbaudière” of the Les Essarts Unit, 25 km south of Nantes and west of St. Philbert de Bouaine (Figure 1b). This unit constitutes a HP metamorphic basement complex of the Southern Armorican Massif that is part of the Variscan belt (Matte 2001). Rocks of oceanic origin (eclogites, amphibolites derived from eclogite, meta-plagiogranites and serpentinites) form several km-long stretched and slightly boudinaged lenses surrounded by foliated ortho- and paragneisses that are rich in white mica (Mauler et al. 2001). The eclogites have gabbroic protoliths with a crystallization age of 1297±60 Ma based on a zircon U-Pb upper intercept age (Peucat et al. 1982). The eclogite-facies metamorphism was dated at 436±15 Ma based on a zircon U-Pb lower intercept age (Peucat et al. 1982). The primary HP mineral assemblage is omphacite + garnet + rutile ± quartz ± kyanite ± zoisite ± magnesio-hornblende ± pyrite ± chalcopyrite and peak P-T conditions are 1.6-2.0 GPa and 650-750 °C (Godard 2009). A major deformation event occurred during the eclogite-facies metamorphism, followed by retrogression that transformed most of the eclogites into amphibolites, in particular affecting the margins of the eclogite lenses. Retrogression is indicated by presence of green amphibole and plagioclase-clinopyroxene symplectite along omphacite grain boundaries.
Mauler et al. (2001). The gneisses surrounding the eclogites with the main mineral assemblage quartz + plagioclase + biotite + garnet + white mica are of continental origin and record two distinct episodes of high-grade metamorphism (Godard 2009). The first event comprises intrusion of granite and migmatisation of cordierite-bearing metapelites (T ~ 670°C, P = 0.3 GPa) within the pre-Variscan continental crust. The second event is an eclogite-facies overprint, cofacial with the eclogitization of the adjacent oceanic mafic rocks at peak P-T conditions of P > 1.6 GPa and T ~ 700°C, which occurred during eo-Variscan subduction (Bernard-Griffiths and Cornichet 1985; Godard 2009) with simultaneous deformation of eclogites and gneisses. Several coronitic and pseudomorphic reactions caused the growth of high-pressure minerals (garnet, kyanite, phengite, rutile) and the expense of the previous high-temperature parageneses (Godard 2009). The Les Essarts Unit is interpreted as tectonic mélange of pre-Variscan oceanic and continental crusts that were eclogitized during subduction and subsequently incorporated into the Variscan orogenic belt (Godard 2001).

[Figure 1 near here]

[Figure 2 near here]

3. Analytical methods

3.1. Nitrogen content and nitrogen isotopic compositions

Nitrogen concentrations and isotopic compositions of bulk rock powders were analysed at Lehigh University. Sample preparation and analytical protocol follow the methods described in Bebout et al. (2007). In brief, about 100-250 mg of sample powder and Cu/CuOx reagent are evacuated for 24 h before sealing, with intermittent heating to ~ 100 °C. Nitrogen is extracted at 1000 °C and transferred as N₂ into a Finnigan MAT 252 mass spectrometer using a Finnigan Gas Bench II and a U-trap interface in which samples of N₂ are entrained in a He stream. Details regarding the calculation of N concentrations in unknowns and reference materials analysed during the course of this study can be found in Halama et al. (2010, 2014). The analytical uncertainties for N concentrations are usually <5%. For δ¹⁵N values (referenced to the isotopic composition of
atmospheric N\textsubscript{2}, “air”), uncertainties are 0.15‰ (1σ) for samples with > 5 µg/g N and 0.6‰ (1σ) for samples with 1-5 µg/g N.

3.2. Major and trace elements

Major and trace element data of the JTS and FTS traverses were published in Beinlich \textit{et al.} (2010) and van der Straaten \textit{et al.} (2012), respectively, and are reproduced in the supplemental dataset. Major and trace elements of the Vendée traverse (supplemental dataset) were analysed by X-ray fluorescence at Universität Heidelberg using a Siemens\textsuperscript{®} SRS303 instrument equipped with a Rh-tube. Major and minor elements were measured on fused glass discs with an accuracy of 0.5-1%. Trace elements (Cr, Ni, Sr, Zr, Ba) were measured on pressed pellets with an accuracy of 5-10%. Further details about the XRF methods are given in Pauly \textit{et al.} (2016). Lithium concentrations were determined at the University of Bristol with a sample-standard bracketing technique using a ThermoElectron\textsuperscript{®}Neptune MC-ICP-MS as described in Marschall \textit{et al.} (2007b). Concentrations were determined by intensity comparison with the bracketing standard (NIST L-SVEC) and have a precision of approximately ±10%.

4. Results

In the profile representing the prograde blueschist-eclogite transformation (JTS sequence), N concentrations successively decrease from the host blueschist (~26 µg/g) to the blueschist-eclogite transition zone (BETZ; 19-23 µg/g) and the eclogitic selvage (12-16 µg/g; Figure 3a). The quartz-carbonate vein has the lowest N concentrations (9.5 µg/g) and the highest $\delta^{15}$N\textsubscript{air} value (+4.8‰) in this sequence (Table 1). Nitrogen isotopic compositions of the eclogitic selvage ($\delta^{15}$N = +2.6 ± 0.2‰) are slightly elevated compared to the BETZ (+2.0 ± 0.2‰) and the host blueschists ($\delta^{15}$N = +1.8 to +2.3‰). Overall, the profile shows a systematic decrease in [N] from the host wall rock towards the vein, which is paralleled by LILE such as Rb (Figure 3a; supplemental dataset). Excluding the vein, the overall range in $\delta^{15}$N in eclogites and blueschists is very limited (only about 1‰) with an average of +2.1±0.3‰ (n=9).

In the profile representing the retrograde eclogite-blueschist transition (FTS sequence), there is a broad increase in N contents from the eclogite towards the blueschist, but the trend shows significant scatter and there is also variability between adjacent samples from the same drill core (3.1-3A and 3.1-3B). The overall range in N contents (8-27 µg/g) is comparable to the JTS
sequence, but the variability in $\delta^{15}$N is larger ($\delta^{15}$N = +1.0 to +5.4‰). $\delta^{15}$N varies unsystematically with regard to distance along the profile (Table 1).

In the eclogite-gneiss profile, the country rock gneisses have high N contents (14-52 µg/g) and positive $\delta^{15}$N values (+2.9 to +5.8‰; Table 1). $\delta^{15}$N values of both garnet amphibolites and eclogites are within the range of the gneiss values, but [N] becomes increasingly lower towards the eclogite with 11-24 µg/g for the amphibolites and 10-14 µg/g for the retrogressed eclogite (Figure 3b). The pristine eclogite is characterized by the lowest N concentrations (2.1-3.6 µg/g) and the lightest N isotopic compositions ($\delta^{15}$N = +2.1 to +3.6‰). The elements Ba and Li show a similar behaviour as N with successively decreasing concentrations from the gneisses to the eclogites (Figure 3b; supplemental dataset).

5. Discussion

5.1. Residency of nitrogen

Nitrogen occurs as ammonium ($\text{NH}_4^+$) in most silicate minerals, where it substitutes for $\text{K}^+$ due to the similarity of these ions in charge and ionic radius. $\text{NH}_4^+$ is thus most strongly concentrated in micas and alkali feldspars in many crustal rocks (Honma and Itihara 1981), as reflected by correlations of N contents with concentrations of LILE (K, Rb, Cs, Ba) in several metasedimentary suites (Bebout et al. 1999; Busigny et al. 2003; Sievers et al. 2016, this issue). Phengite (Si-rich potassic white mica) is the main N carrier mineral in high-$P/T$ metamorphosed mafic and ultramafic rocks, but $\text{NH}_4^+$ may also occur in Ca-Na minerals where phengite is absent (Busingy et al., 2011; Halama et al., 2010; 2012). The positive correlation of N with K, Ba, Rb and Cs (Figure 4) in both Tianshan sequences points to a mineralogical control by phengite regarding the N concentrations in the bulk rocks, because phengite is known to be the principal carrier for these elements in phengite-bearing eclogites and high-$P/T$ metapelites (e.g., Sorensen et al. 1997; Zack et al. 2001).

The JTS sequence shows the most striking correlation among N abundances and LILE concentrations, with a systematic decrease from host blueschists via the BETZ towards eclogites and the vein (Figure 4a). The key role of phengite as N host is underlined by the decreasing modal
occurrence of white mica (phengite + paragonite) towards the vein (Figure 5; Beinlich et al. 2010).

The somewhat larger scatter in the FTS sequence (Figure 4b) may be related to the generally much smaller concentration variations compared to the JTS sequence. Moreover, paragonite (sodic white mica) forms in response to the retrograde overprint in the FTS sequence. Although paragonite is capable of incorporating significant amounts of N in the order of up to 100 µg/g (Busigny et al. 2011), phengite frequently contains several hundreds of µg/g (Sadofsky and Bebout 2000) and is hence a more likely major N host. The unsystematic variations in modal abundances of these two phases are therefore thought to contribute to the scattered trends in the FTS sequence. In the eclogite-gneiss profile, there is a systematic, coupled increase in N and LILE as well as Li from eclogites via retrogressed eclogites and amphibolites towards the surrounding gneisses (Figure 4c).

The low N contents in the eclogites are consistent with the lack of K-bearing phases. Any N present is probably residing in omphacitic (Na-Ca) clinopyroxene, in agreement with observations from natural metagabbros (Busigny et al. 2011) and experimental results that show the potential of clinopyroxene to incorporate N at ultrahigh pressures (Watenphul et al. 2010). Additional N present in retrogressed eclogites and amphibolites may be incorporated into plagioclase, for which N concentrations of 2-45 µg/g have been reported, substituting for Ca and Na (Honma and Itihara 1981), and to a lesser degree into amphibole (2-5 µg/g N, Honma and Itihara 1981). In the gneisses, N can be incorporated into muscovite and biotite, both of which can host large amounts (>1000 µg/g) of N (Sadofsky and Bebout 2000).

5.2. Nitrogen elemental and isotopic characteristics

All three of the sample suites are characterized by a limited (≤ 5‰) variation in δ¹⁵N and positive δ¹⁵N values, which distinguishes them from fresh MORB (Figure 6). Most of the δ¹⁵N values of the mafic samples overlap with those of global eclogites, which were interpreted to largely reflect the N isotope compositions of their protolith (altered oceanic crust, AOC) with or without the effects of metamorphic dehydration (Halama et al. 2010). Metamorphic dehydration generally causes a decrease in N concentrations and an increase in δ¹⁵N values (Haendel et al. 1986; Bebout and Fogel 1992), but the large compositional variability of AOC hinders the identification
of dehydration effects. At each location, some of the mafic samples have elevated N contents relative to global eclogites, in particular the Tianshan blueschists and the Vendée amphibolites, trending towards compositions of metasediments (Figure 6). In the prograde blueschist-eclogite JTS sequence, the blueschists represent the rocks least affected by eclogitization-causing fluid overprint, and hence may have inherited their signature during a previous metasomatic event, e.g. during seafloor alteration or blueschist-facies metamorphism. The trend in the JTS sequence towards relatively N-poor compositions is unlikely to be entirely due to a decreasing modal abundance of white mica as suitable host mineral for N because the modal abundances of white mica are similar in the host blueschists (8-11%) and the BETZ (12-15%), with only the eclogitic selvage having lower contents (4-11%; Beinlich et al. 2010). Hence, the trend suggests that the fluid inducing the eclogitization was relatively poor in N and probably not of sedimentary origin. This finding is in agreement with the Ca and Sr isotope data pointing to a dehydrating oceanic lithosphere, i.e. AOC or serpentinized slab mantle, as potential fluid source (John et al. 2012). An estimate for the average $\delta^{15}$N of ultramafic rocks recycled into the mantle is $+3\pm2$‰ (Halama et al. 2014), but individual serpentinized peridotite samples have even more positive $\delta^{15}$N values of up to $+15$‰ (Philippot et al. 2007).

In contrast, the blueschists of the FTS sequence are among the samples that are most strongly affected by retrograde metasomatism. Their elevated N contents at moderately positive $\delta^{15}$N are consistent with a metasomatic overprint by a fluid that either originated from or equilibrated with metasedimentary rocks. In the Vendée profile, the field evidence clearly demonstrates increasing fluid-induced overprint of the eclogite lens by fluids derived from the surrounding metasedimentary gneisses, producing the sequence fresh eclogite – retrogressed eclogite – amphibolite – metasedimentary gneiss. This profile allows evaluation of the effects of the metasedimentary fluids on [N] and $\delta^{15}$N in the eclogite lens. Both the N concentrations and the $\delta^{15}$N values increase in the metasomatically overprinted mafic rocks compared to the pristine eclogite. These features can be explained by assuming that the country rock paragneisses with high N contents and an adequate N isotopic composition were the source lithology for the metasomatic fluids, corroborating the field evidence. Hence, both the Tianshan FTS and the Vendée profile underline the sensitivity of the N system to sediment-derived fluids. These fluids incorporated biogenic N that was originally present as organic matter in the sediments. Granitic rocks from the Cornubian batholith similarly show high N contents (6-139 µg/g) and positive $\delta^{15}$N (+5 to $+10$‰) values (Boyd et al. 1993). These features were interpreted to reflect inheritance of N of biological origin as the granites are essentially derived from the anatexis of NH$_4^+$-bearing metasediments that originally contained organic material (Hall 1987; Boyd et al. 1993).
5.3. Fluid-rock interaction processes

In this section, we focus on the prograde blueschist-eclogite JTS sequence because it shows a relatively simple mineralogical control on N contents, resulting in clear correlations that can be compared to various fluid-rock interaction processes potentially affecting the rocks. Busigny and Bebout (2013) summarized four types of N exchange between mineral and fluid that can be distinguished during metamorphism, and each of these will be evaluated in turn:

1. Thermal decomposition: Thermal decomposition causes the complete breakdown of mineral hosts due to increasing temperatures and the onset of partial melting. This leads to a decreasing modal abundance of mica and loss of N if no other suitable host phases for N, such as K-feldspar (incorporation of NH$_4^+$) or cordierite (incorporation of N$_2$ in channels of the mineral structure), are present in the melting residue (Palya et al. 2011). Thermal decomposition can be excluded in the studied profiles because there is no field or petrographic evidence for partial melting and estimates of peak temperatures are too low for partial melting of mafic rocks to occur.

2. Cation exchange: Cation exchange of NH$_4^+$ and K$^+$ between white mica and a fluid can release NH$_4^+$ into the fluid if the rock equilibrates with a fluid rich in K$^+$, thereby replacing NH$_4^+$ in white mica by K$^+$ (Eugster and Munoz 1966; Busigny and Bebout 2013). A similar exchange may occur between NH$_4^+$ and Rb$^+$ or Cs$^+$. This process is expected to cause a negative correlation of NH$_4^+$ with K$^+$ (and Rb$^+$, Cs$^+$). However, all investigated profiles show a positive correlation of K and N. This is the opposite behaviour to what would be expected if cation exchange was the dominant fluid-rock interaction process and we hence exclude cation exchange as major process.

3. Continuous metamorphic devolatilization reactions: Devolatilization reactions during prograde metamorphism cause changes in mica chemistry and mica modal abundances in the rock (Bebout and Fogel 1992; Bebout et al. 2013). During devolatilization, isotopically light N is preferentially fractionated into the metamorphic fluid. Consequently, residual mica records an increase in $\delta^{15}$N with increasing degrees of devolatilization (Haendel et al. 1986; Bebout and Fogel 1992; Jia et al.
To test the effects of metamorphic devolatilization, we calculated the composition of the residual rock for batch devolatilization and Rayleigh distillation models (Figure 7a). In an open-system Rayleigh distillation model, each fluid increment produced by phengite dehydration is immediately removed from the rock. In contrast, the batch devolatilization model assumes that all of the fluid released equilibrates with the rock and is lost in a single batch (Valley 1986).

The isotopic fractionation depends on the N speciation in the fluid (N$_2$ or NH$_3$). It is evident that devolatilization models involving NH$_3$ cannot explain the observed trend in the JTS sequence (Figure 7a). Busigny et al. (2003) modelled phengite chemical evolution during progressive Rayleigh distillation for LILE, and we use this approach to test the applicability of continuous metamorphic reactions on the prograde blueschist-eclogite JTS data set (Figure 7b, c). Different partition coefficients between fluid and phengite for K, Rb, Cs and N cause fractionation between these elements during devolatilization (Melzer and Wunder 2000; Busigny et al. 2003). Since all these elements predominantly resided in phengite, their ratios in phengite reflect those of the whole rock (Zack et al. 2001). Caesium has a larger preference for the fluid than both Rb and N, producing a relatively sharp decrease in Cs abundances and curved Rayleigh distillation trends in bivariate diagrams (Figure 7b, c). The linear correlations of the measured data suggest that continuous metamorphic phengite dehydration via a Rayleigh distillation process in an open system cannot have caused the coupled decrease in Rb-Cs and N-Cs, respectively. The coupled losses of these elements which are observed with decreasing distance to the vein do not appear to obey a K$_{dv}$-controlled Rayleigh distillation process. However, a good fit to the JTS data is obtained for a N$_2$ batch devolatilization model, only the vein plots off the modelled trend (Figure 7a). Hence, the N isotope data support a batch devolatilization process.

(4) Fluid-induced breakdown of white mica: It has been shown that the eclogitization adjacent to the vein structure occurred due to fluid-mediated replacement processes during which the blueschist continuously equilibrated with an external fluid characterized by a composition that differed strongly from that of the wall rock blueschist (Beinlich et al. 2010; John et al. 2012). Consequently, the blueschist mineral assemblage has been successively replaced by a new eclogite assemblage (Putnis and Austrheim 2010; Putnis and John 2010). This process can be generalised by breakdown reactions such as:
2 KAl$_2$(Si$_3$AlO$_{10}$)(OH)$_2$ + 2 H$^+$ = 3 Al$_2$SiO$_5$ + 3 SiO$_2$ + 2 K$^+$ + 3 H$_2$O  \[1\]

2 KAl$_2$(Si$_3$AlO$_{10}$)(OH)$_2$ = 3 Al$_2$SiO$_5$ + 3 SiO$_2$ + 2 K$^+$ + 2 OH$^-$ + H$_2$O  \[2\]

Once liberated from phengite, N and the LILE (formerly substituting for K in phengite) enter the fluid, which mediates diffusive or advective transport towards the nearest transport vein leading to long-distance element removal (Zack and John 2007). This process of fluid-induced decomposition of white mica is in agreement with the coupled bulk losses of LILE and N. The combined stripping of LILE and N from the blueschists requires infiltration of a K-poor fluid, which drives chemical reactions towards reduced chemical potential gradients for fluid species by destroying phengite and releasing LILE and N into the fluids (Breeding et al. 2004; John et al. 2012). Loss of Al$_2$O$_3$ in both the BETZ (~2-9%) and in the eclogitic selvage (~12%) compared to the blueschist host (Beinlich et al. 2010) suggest release and removal of Al during phengite breakdown. The behaviour of Si is less systematic, with some relative losses in BETZ samples but also gains in the eclogitic selvage (Beinlich et al. 2010), likely related to infiltration from the vein-forming fluid.

If the fluids infiltrating the rock are highly oxidising, NH$_4^+$ will be partially oxidised to N$_2$, which will then be lost from the system in the fluid (Bebout and Fogel 1992; Svensen et al. 2008). Oxidizing fluids are capable of destroying ammonium muscovite and forming kyanite and quartz by the reaction (Eugster and Munoz 1966):

2 NH$_4$Al$_2$(Si$_3$AlO$_{10}$)(OH)$_2$ + 1.5 O$_2$ = 3 Al$_2$SiO$_5$ + 3 SiO$_2$ + N$_2$ + 6 H$_2$O \[3\]

More reducing fluids may cause breakdown of ammonium muscovite by the reaction

2 NH$_4$Al$_2$(Si$_3$AlO$_{10}$)(OH)$_2$ = 3 Al$_2$SiO$_5$ + 3 SiO$_2$ + 2 NH$_3$ + 3 H$_2$O \[4\]

Generally, fluid-rock interaction can be considered as an important mechanism to release large amounts of specific elements that are hosted by a single mineral phase. Regarding the transport of LILE and N, phengite mode and breakdown rate are the most important parameters of the rock for storage and release, respectively, of these elements. The combined N elemental and isotope systematics suggest a scenario of fluid-induced breakdown of white mica and batch devolatilization of N in the system.

5.4. Transfer and sources of nitrogen

The prograde blueschist-eclogite transition of the JTS sequence, which is induced by metasomatism, provides compelling evidence for removal of N due to phengite breakdown. Other elements, such as Ca, Sr and Pb, were added by the fluid-induced overprint (Beinlich et al. 2010), and consequently exhibit negative correlations with N contents (Figure 8). The degree to which N
potentially present in the fluid would have been able to exchange with the rock and alter [N] and 
\( \delta^{15}N \) depends on the compatibility of N in the available mineral hosts and the abundance of these 
host phases. In the metasomatically formed eclogites of the JTS sequence, no other mineral except 
phengite is able to incorporate significant amounts of N. The \( \delta^{15}N_{\text{fluid}} \) is estimated as \( \sim +7\% \) based 
on vein composition and the \( \text{NH}_4^+ - \text{N}_2 \) fractionation factor at 527°C from Hanschmann (1981).
Positive \( \delta^{15}N \) that overlap the vein composition were observed in AOC from the East Pacific Rise 
(Busigny et al. 2005) and in various (meta)sedimentary rocks (Figure 9a). However, the 
combination of a high-\( \delta^{15}N \) fluid that introduced large amounts of externally-derived Ca and Sr, but 
not LILE, is pointing towards AOC rather than (meta)sediments as the most likely fluid source. 
This conclusion is consistent with Ca-Sr isotope data, which demonstrated that seawater-altered 
lithospheric rocks were the dominant source for the metasomatic fluid that induced eclogitization in 
the JTS sequence (John et al. 2012). In the \( \delta^{15}N - \text{Rb/N} \) diagram (Figure 9a), where mixing 
relationships appear as straight lines, an apparent mixing trend between the JTS rock with the 
highest Rb/N ratio and the vein composition yields a decent fit to the data points. Our preferred 
interpretation of this apparent mixing relationship is that up to \( \sim 40\% \) of the initially present 
phengite was destroyed by the fluid-induced overprint, in agreement with the observed decrease of 
modal phengite abundance (Beinlich et al. 2010), causing successively decreasing Rb/N ratios 
coupled to decreasing N contents. Changes in \( \delta^{15}N \) in the overprinted eclogites compared to the 
blueschists are minor and an externally-derived N isotope signature is not clearly discernible from 
\( \delta^{15}N \) variability due to protolith heterogeneities \( \pm \) devolatilization effects.

In contrast to the JTS sequence, both of the two profiles with a retrograde overprint, the FTS 
sequence and the Vendée profile, show addition of N during metasomatism. For the FTS sequence, 
the addition was not pervasive and systematic, as the [N]-distance relationships are scattered, 
possibly related to the availability of fluid pathways within the rock and/or small-scale 
heterogeneities. The straight line correlation on the \( \delta^{15}N - \text{Rb/N} \) diagram (Figure 9a) points to a 
mixing relationship, but the position of both eclogite and blueschist at the upper end of this trend 
add a complexity likely related to the co-existence of phengite and paragonite, which precludes any 
further conclusions.

Retrograde alteration in the Vendée mafic rocks was accompanied by increasing K/N ratios and 
\( \delta^{15}N \) values (Figure 9b). Any metasomatic fluid entering the eclogite lenses must have passed 
through the surrounding paragneisses, which therefore constitute the most likely source for any 
elements added to the eclogites. Retrogressed eclogites and amphibolites are enriched in N up to 10 
times compared to the precursor eclogites and \( \delta^{15}N \) has been changed by up to 4\%. Original 
protolith signatures and effects of prograde metamorphism were overprinted by the retrograde
metamorphism as N has been transported on length scales of at least several 10s of meters, although
the most pristine eclogites may still preserve the original signatures. The contribution by the
relatively N-rich, high-δ15N paragneisses is exemplified by mixing relationships between two
different gneisses and eclogite where the whole-rock K/N ratios are considered to approximate
those of the fluid (Figure 9b). Given the large spread in K/N ratios in the gneisses, fluid-mediated
mixing can easily explain elevated K/N in retrograde overprinted eclogites. The complete overlap in
δ15N between retrogressed eclogites/amphibolites and gneisses provides evidence for the great
sensitivity of the N isotope system to fluids that interacted with or are derived from
(meta)sediments. Amphibolites and retrogressed eclogites have isotopically almost fully
equilibrated with the gneisses, and heterogeneities, inherited from the eclogite precursor, were only
preserved in the inner parts of the eclogite lens. The fluid-mediated influx of N from the gneisses
into the eclogite lens was likely aided by transport of N via amphibole veins, which occur in the
eclogites and served as more effective transport pathway compared to the less permeable bulk rock.
The Vendée profile not only shows direct evidence for the derivation of N in a metasomatic fluid
from metasedimentary rocks, but, importantly, that this process can happen on length scales of 10s
of meters.

6. Conclusions

We investigated three profiles in metasomatically overprinted high-pressure metamorphic rocks
to determine the effects of fluid-rock interaction on N elemental and isotopic systematics. Positive
correlations of N with K, Ba, Rb and Cs in blueschists and eclogites demonstrate that phengitic
white mica is the major N host in metamorphic rocks with mafic precursors. During prograde
overprint of blueschists and transformation into eclogites, the observed straight line correlations
between N and LILE and near-constant ratios of N/K, N/Rb, N/Cs and Cs/Rb do not resemble
differential losses related to differing equilibrium partitioning during metamorphic devolatilization
via a Rayleigh distillation process, but instead indicate that fluid-mediated N mobilization and loss
from the rock is related to complete breakdown of white mica. Hence, N abundances are strongly
controlled by the stability and presence of white mica in HP metamorphic rocks, and external N
contributions to the whole rock budget remain insignificant as long as no other N host forms. Fluid-induced breakdown of phengite in HP rocks can liberate large amounts of N that is released into the fluid (Figure 10). The N isotopic compositions show only small variations that are consistent with a batch devolatilization process coupled to the phengite breakdown. During fluid-induced retrograde overprint of eclogites, the N system is highly sensitive to fluids that equilibrated with metasedimentary rocks and can be used to trace the extent of N transport from host rocks into eclogite lenses. This transport can occur over several tens of meters and affect both N concentrations and isotopic compositions (Figure 10), as evidenced by a profile from metasedimentary gneisses into an eclogite lens. Elevated N contents in retrogressed mafic HP rocks suggest that plagioclase and amphibole are capable to incorporate N derived from metasomatic fluids.

[Figure 10 near here]

Acknowledgements

HRM would like to thank Gaston Godard for field guidance in the Vendée. Lithium concentration data were previously unpublished and were provided by Philip Pogge von Strandmann, which is gratefully acknowledged. We thank Sarah Penniston-Dorland and Vincent Busigny for the constructive reviews that helped to greatly improve the manuscript. Support of this project was partly provided by National Science Foundation grant EAR-0711355 to GEB.
References


Godard, G., 2009, Two orogenic cycles recorded in eclogite-facies gneiss from the southern Armorican Massif (France), European Journal of Mineralogy, v. 21, p. 1173-1190.


Marschall, H.R., Altherr, R., and Rüpke, L., 2007a, Squeezing out the slab – modelling the release of Li, Be and B during progressive high-pressure metamorphism: Chemical Geology, v. 239, p. 323-335.


**Figure captions**

**Figure 1:** Locations and geological setting of the sampling areas. **A)** Simplified geological map of the Chinese South Tianshan (modified after Gao *et al.* 1999). **B)** Geological map showing the Les Essarts HP unit in the Southern Armorican Massif, France (modified after Mauler *et al.* 2001).

**Figure 2:** Sketches and field photographs illustrating the sample profiles for **A)** the prograde blueschist-eclogite transition (JTS sequence; Beinlich *et al.* 2010) and **B)** the retrograde eclogite-blueschist transition (FTS sequence; van der Straaten *et al.* 2012). **C)** shows a map of the La Gerbaudière quarry (Saint-Philbert-de Bouaine, Vendée) in 1999 with location of the sampling traverse (modified after Mauler *et al.* 2001 and Godard 2001).

**Figure 3:** Nitrogen elemental and isotopic variations in **A)** the prograde blueschist-eclogite transition (JTS sequence, Tianshan) and **B)** the gneiss-eclogite traverse (Vendée). Additional trace element data for the JTS sequence are from Beinlich *et al.* (2010), with a precision of <5% RSD (John *et al.* 2008; van der Straaten *et al.* 2012). Uncertainties for element concentrations are smaller than the symbol size.

**Figure 4:** Elemental correlations of N with other trace elements in the three profiles studied. **A)** JTS sequence, Tianshan, **B)** FTS sequence, Tianshan, **C)** Gneiss-eclogite traverse, Vendée.

**Figure 5:** Modal content of white mica (phengite + paragonite) in rocks of the prograde blueschist-eclogite transition (JTS traverse, Tianshan; data from Beinlich *et al.* 2010) plotted versus the N concentrations.

**Figure 6:** Nitrogen elemental and isotopic systematics of the analysed rocks compared to fresh MORB (Busigny *et al.* 2005), eclogites (Halama *et al.* 2010), metasedimentary rocks (Bebout and Fogel 1992; Mingram and Bräuer 2001; Busigny *et al.* 2003) and altered oceanic crust (AOC; Busigny *et al.* 2005).
Metamorphic dehydration models. A) Batch devolatilization (solid lines) and Rayleigh distillation (dashed lines) models of N isotopic compositions and concentrations, using the most N-rich blueschist of the JTS sequence (JTS-A) as initial composition. Isotopic fractionation by batch devolatilization is described by the equation $\delta^{15}N_f = \delta^{15}N_i - (1-F)1000 \ln \alpha$, and fractionation following Rayleigh distillation is given by the equation $\delta^{15}N_f = \delta^{15}N_i + 1000(F^{(-1)} - 1)$, where $\delta^{15}N_i$ and $\delta^{15}N_f$ are the initial and final isotopic compositions of the rock, $\alpha$ is the fluid–rock fractionation factor and $F$ is the N fraction that remains in the rock after devolatilization. Fractionation factors used in the calculations are those tabulated in Haendel et al. (1986) based on Hanschmann (1981) for 527 °C. Tick marks give the fraction of N remaining in the rock in 10% steps. B) and C) show calculated curves of progressive phengite dehydration by Rayleigh distillation using equations and methodology outlined in Busigny et al. (2003) and exchange coefficients ($K_D$ values) based on experimental conditions of 2.0 GPa and 600 °C (Melzer and Wunder 2000), which represent a good approximation of the natural peak P-T conditions. Rayleigh distillation is modelled by fixing the initial composition and applying $K_D^{Cs-N} = 0.14$ and $K_D^{Ce-Rb} = 0.14$. Tick marks give the fraction of remaining phengite after dehydration in 10% steps.

Relationships between N, $\delta^{15}$N and Pb, CaO in the prograde blueschist-eclogite JTS sequence. The grey band indicates the average $\delta^{15}$N value of the 9 samples from the profile, excluding the vein ($\delta^{15}$N$_{\text{average}} = +2.1 \pm 0.3$).

Potential mixing relationships in $\delta^{15}$N–Rb/N and $\delta^{15}$N–K/N space for the Tian Shan profiles (A) and the Vendée profile (B). The field for altered oceanic crust (AOC) is based on data from the East Pacific Rise (EPR; Busigny et al. 2005). Compositions of (meta)sedimentary rocks are average values from five distinct locations (data from Busigny et al. 2003; Sadofsky and Bebout 2003, 2004; Li and Bebout 2005). Solid lines are calculated mixing curves with 10% tick marks.
Summary figure illustrating the processes observed in the metamorphosed mafic rock sequences of this study.
**Fig. 2**

A) JTS sequence

- **blueschist host rock**
- **host rock reference samples**
- **BETZ (blueschist-eclogite transition zone)**
- **eclogitic selvage**

B) FTS sequence

- **increasing blueschist-facies overprint**
- **maximum extension of glaucophane**

C) Vendée traverse

- **Paleogene sediments, embankments**
- **Gneiss**
- **Amphibolite**
- **Retrogressed eclogite**
- **Eclogite**

Fig. 3

A) JTS sequence

- **Rb** concentration
- **N** concentration
- **Li** concentration
- **Pb** concentration
- **δ^{15}N** concentration

**Distance to vein (cm):**
- 180
- 160
- 140
- 120
- 100
- 80
- 60
- 40
- 20
- 0

**Concentration (µg/g):**
- 6
- 5
- 4
- 3
- 2
- 1
- 0

**Blueschist host rock**
**Blueschist-eclogite transition zone (BETZ)**
**Eclogite Vein**
**Eclogite BETZ**

B) Vendée traverse

- **Ba** concentration
- **N** concentration
- **Li** concentration

**Distance (m):**
- 0
- 20
- 40
- 60
- 80
- 100

**Concentration (µg/g):**
- 1000
- 100
- 10
- 1

**Gneiss**
**Amphibolite**
**Retrogressed eclogite**
**Eclogite BETZ**
Fig. 5

Modal white mica (%) vs. $N$ (µg/g)

- Blueschist
- BETZ
- Eclogite
- Vein
Fig. 7

A) 

\[ \delta^{15}N (\%oo) \]

vs. \( N (\mu g/g) \)

B) 

\( Rb \) (molar x 10\(^{-7}\))

vs. \( Cs \) (molar x 10\(^{-9}\))

C) 

\( N \) (molar x 10\(^{-6}\))

vs. \( Cs \) (molar x 10\(^{-9}\))

Rayleigh distillation

Batch devolatilization

\( NH_3-NH_4^+ \)

\( N_2-NH_4^+ \)

\( N_2 \)
Fig. 9

A) Tianshan

B) Vendée
Phengite growth

Phengite as major host of nitrogen via incorporation of NH$_4^+$ for K$^+$

Phengite breakdown

Mobilisation of nitrogen and release into fluid

Phengite re-equilibration

Exchange with high-$\delta^{15}$N sediment-derived fluid
Table 1: Nitrogen concentration and isotope data of the three profiles investigated in this study

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Rock-type</th>
<th>N (µg/g)</th>
<th>$\delta^{15}$N (‰)</th>
<th>Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JTS-A</td>
<td>blueschist</td>
<td>26.2</td>
<td>1.8</td>
<td>-1.77</td>
</tr>
<tr>
<td>JTS-B</td>
<td>blueschist</td>
<td>26.0</td>
<td>2.3</td>
<td>-1.04</td>
</tr>
<tr>
<td>JTS-C</td>
<td>bs/ec</td>
<td>21.9</td>
<td>1.7</td>
<td>-0.70</td>
</tr>
<tr>
<td>JTS-D</td>
<td>bs/ec</td>
<td>23.1</td>
<td>2.0</td>
<td>-0.49</td>
</tr>
<tr>
<td>JTS-E</td>
<td>bs/ec</td>
<td>19.1</td>
<td>2.3</td>
<td>-0.30</td>
</tr>
<tr>
<td>JTS-F</td>
<td>bs/ec</td>
<td>20.8</td>
<td>2.1</td>
<td>-0.15</td>
</tr>
<tr>
<td>JTS-G</td>
<td>eclogite</td>
<td>12.2</td>
<td>2.7</td>
<td>-0.03</td>
</tr>
<tr>
<td>JTS-D'</td>
<td>qz-carbonate vein</td>
<td>9.5</td>
<td>4.8</td>
<td>0</td>
</tr>
<tr>
<td>JTS-I</td>
<td>eclogite</td>
<td>16.2</td>
<td>2.5</td>
<td>0.06</td>
</tr>
<tr>
<td>JTS-J</td>
<td>bs/ec</td>
<td>22.4</td>
<td>1.7</td>
<td>0.11</td>
</tr>
</tbody>
</table>

*JTS* = Joint Tian Shan; bs = blueschist; ec = eclogite; Qz = quartz

Tian Shan, retrograde eclogite-blueschist transformation (FTS 9-1 sequence)

| FTS 9.1-1 | blueschist | 26.6 | 5.38 | 0 |
| FTS 9.1-2 | ec/bs      | 13.1 | 0.96 | 0.05 |
| FTS 9.1-3 B | ec/bs    | 19.6 | 4.93 | 0.10 |
| FTS 9.1-3 A | ec/bs    | 11.9 | 2.19 | 0.10 |
| FTS 9.1-4 | ec/bs     | 8.0  | 2.94 | 0.15 |
| FTS 9.1-5 B | ec/bs    | 8.4  | 4.40 | 0.20 |
| FTS 9.1-5 A | eclogite | 10.9 | 4.91 | 0.20 |

Vendée, gneiss-to-eclogite profile

| G08-3-2 | gneiss | 14.0 | 5.8 | 0 |
| G08-3-1 | biotite gneiss | 46.3 | 2.9 | 7.7 |
| G08-3-3 | garnet gneiss | 52.4 | 4.6 | 12.2 |
| G08-3-4 | garnet gneiss | 37.5 | 4.4 | 16.0 |
| G08-3-5 | gneiss | 19.7 | 5.1 | 20.5 |
| G08-3-6 | garnet amphibolite | 23.7 | 5.0 | 21.5 |
| G08-3-7 | garnet amphibolite | 10.8 | 4.7 | 24.4 |
| G08-3-8 | retrogressed eclogite | 14.1 | 4.5 | 27.2 |
| G08-3-9 | retrogressed eclogite | 10.0 | 3.7 | 34 |
| G08-3-10 | eclogite | 3.6 | 2.2 | 60 |
| G08-3-11 | eclogite | 2.1 | 0.9 | 78 |
| G08-3-12 | eclogite | 2.3 | 4.5 | 101 |
| G08-3-12 repl. | eclogite | 2.1 | 3.6 | 101 |
| G08-3-12 avg. | eclogite | 2.2 | 4.1 | 101 |

repl. = replicate analyses; avg. = average
| Sample | JTS-A | JTS-B | JTS-C | JTS-D | JTS-E | JTS-F | JTS-G | JTS-H | JTS-I | JTS-O' | FTS 9-1.1 | FTS 9-1.2 | FTS 9-1.3B | FTS 9-1.3A | FTS 9-1.4 | FTS 9-1.5B | FTS 9-1.5A |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|-----------|--------------|--------------|-------------|-------------|-------------|-------------|
| Traverse | JTS | FTS |
| Rock type | Bluestone | Bluestone | EC/BS | EC/BS | EC/BS | EC/BS | EC/BS | Bluestone | EC/BS | EC/BS | EC/BS | Bluestone | EC/BS | Bluestone | EC/BS | EC/BS | EC/BS | Bluestone |
| Location | Host rock | Host rock | BETZ | BETZ | BETZ | BETZ | SELECT | Vein | Host rock | Host rock | BETZ | BETZ | BETZ | BETZ | Selvage |

**Major elements (wt.%)**

- SiO₂: 47.66
- TiO₂: 3.76
- Al₂O₃: 15.44
- Fe₂O₃: 13.52
- MnO: 0.19
- MgO: 5.53
- CaO: 6.04
- Na₂O: 3.25
- K₂O: 2.07
- P₂O₅: 0.70
- CO₂: n.a.
- H₂O + LOI-CA₀₂: n.a.
- LOI: 1.01
- Total: 99.17

**Trace elements (µg/g)**

- Li: 20.4
- Rb: 36.0
- Sr: 205
- Y: 49.0
- Zr: 382
- Cs: 0.790
- Ba: 603
- Pb: 2.28

**Modal composition**

- Garnet: 22.8
- Omphacite: 16.9
- Glaucoephane: 36.4
- White mica: 8.0
- Quartz: 2.4
- Carbonate: 0.9
- Others: 12.7

...
<table>
<thead>
<tr>
<th>Sample</th>
<th>GOB-3-2</th>
<th>GOB-3-1</th>
<th>GOB-3-3</th>
<th>GOB-3-4</th>
<th>GOB-3-5</th>
<th>GOB-3-6</th>
<th>GOB-3-7</th>
<th>GOB-3-8</th>
<th>GOB-3-9</th>
<th>GOB-3-10</th>
<th>GOB-3-11</th>
<th>GOB-3-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock type</td>
<td>Gneiss</td>
<td>Gneiss</td>
<td>Gneiss</td>
<td>Gneiss</td>
<td>Gneiss</td>
<td>Amphibolite</td>
<td>Amphibolite</td>
<td>RetEcc</td>
<td>RetEcc</td>
<td>Eclogite</td>
<td>Eclogite</td>
<td>Eclogite</td>
</tr>
<tr>
<td>Traverse distance (m)</td>
<td>0.0</td>
<td>7.7</td>
<td>12.2</td>
<td>16.0</td>
<td>20.5</td>
<td>21.5</td>
<td>24.4</td>
<td>27.2</td>
<td>34.0</td>
<td>60.0</td>
<td>78.0</td>
<td>101.0</td>
</tr>
<tr>
<td><strong>Major elements (wt.%)</strong></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>65.16</td>
<td>73.59</td>
<td>60.19</td>
<td>64.84</td>
<td>62.96</td>
<td>63.17</td>
<td>54.21</td>
<td>52.53</td>
<td>50.62</td>
<td>48.02</td>
<td>48.86</td>
<td>48.16</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.66</td>
<td>0.27</td>
<td>1.19</td>
<td>0.91</td>
<td>0.76</td>
<td>0.80</td>
<td>0.98</td>
<td>0.28</td>
<td>0.33</td>
<td>1.23</td>
<td>1.21</td>
<td>1.29</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.83</td>
<td>13.73</td>
<td>15.29</td>
<td>14.65</td>
<td>15.72</td>
<td>15.29</td>
<td>16.74</td>
<td>21.73</td>
<td>18.99</td>
<td>14.51</td>
<td>14.73</td>
<td>15.13</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>5.38</td>
<td>8.17</td>
<td>8.70</td>
<td>7.80</td>
<td>6.78</td>
<td>6.61</td>
<td>8.52</td>
<td>4.32</td>
<td>6.08</td>
<td>11.82</td>
<td>11.40</td>
<td>11.68</td>
</tr>
<tr>
<td>MnO</td>
<td>0.09</td>
<td>0.02</td>
<td>0.13</td>
<td>0.12</td>
<td>0.14</td>
<td>0.12</td>
<td>0.20</td>
<td>0.07</td>
<td>0.13</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>MgO</td>
<td>2.37</td>
<td>0.56</td>
<td>3.66</td>
<td>2.23</td>
<td>2.78</td>
<td>2.67</td>
<td>5.63</td>
<td>5.04</td>
<td>7.58</td>
<td>7.98</td>
<td>8.02</td>
<td>8.06</td>
</tr>
<tr>
<td>CaO</td>
<td>2.22</td>
<td>1.17</td>
<td>3.04</td>
<td>2.70</td>
<td>3.03</td>
<td>2.28</td>
<td>7.42</td>
<td>10.93</td>
<td>10.87</td>
<td>12.40</td>
<td>11.28</td>
<td>12.17</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.15</td>
<td>3.02</td>
<td>1.89</td>
<td>2.84</td>
<td>3.35</td>
<td>3.67</td>
<td>2.90</td>
<td>2.70</td>
<td>2.82</td>
<td>2.18</td>
<td>2.40</td>
<td>2.41</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.84</td>
<td>4.29</td>
<td>3.41</td>
<td>1.67</td>
<td>1.44</td>
<td>2.04</td>
<td>1.00</td>
<td>0.88</td>
<td>0.74</td>
<td>0.11</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.20</td>
<td>0.10</td>
<td>0.19</td>
<td>0.11</td>
<td>0.16</td>
<td>0.10</td>
<td>0.13</td>
<td>0.02</td>
<td>0.02</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>LOI</td>
<td>1.45</td>
<td>0.82</td>
<td>2.23</td>
<td>1.41</td>
<td>1.96</td>
<td>2.08</td>
<td>1.91</td>
<td>1.56</td>
<td>1.78</td>
<td>0.72</td>
<td>0.41</td>
<td>0.52</td>
</tr>
<tr>
<td>Total</td>
<td>99.35</td>
<td>99.41</td>
<td>99.38</td>
<td>99.28</td>
<td>99.09</td>
<td>98.83</td>
<td>99.63</td>
<td>100.06</td>
<td>99.95</td>
<td>99.5</td>
<td>99.65</td>
<td>99.79</td>
</tr>
<tr>
<td><strong>Trace elements (μg/g)</strong></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>24.7</td>
<td>31.1</td>
<td>47.2</td>
<td>14.3</td>
<td>23.2</td>
<td>30.5</td>
<td>21.0</td>
<td>15.0</td>
<td>18.5</td>
<td>7.35</td>
<td>7.65</td>
<td>7.70</td>
</tr>
<tr>
<td>Cr</td>
<td>20.3</td>
<td>b.d.l.</td>
<td>72.2</td>
<td>31.5</td>
<td>30.3</td>
<td>42.9</td>
<td>16.9</td>
<td>52.7</td>
<td>147</td>
<td>258</td>
<td>202</td>
<td>215</td>
</tr>
<tr>
<td>Ni</td>
<td>b.d.l.</td>
<td>b.d.l.</td>
<td>5.0</td>
<td>10.2</td>
<td>3.1</td>
<td>2.8</td>
<td>28.7</td>
<td>b.d.l.</td>
<td>1.8</td>
<td>59.5</td>
<td>31.5</td>
<td>38.3</td>
</tr>
<tr>
<td>Sr</td>
<td>240</td>
<td>142</td>
<td>245</td>
<td>258</td>
<td>357</td>
<td>355</td>
<td>281</td>
<td>813</td>
<td>406</td>
<td>147</td>
<td>126</td>
<td>125</td>
</tr>
<tr>
<td>Zr</td>
<td>190</td>
<td>149</td>
<td>241</td>
<td>356</td>
<td>244</td>
<td>297</td>
<td>188</td>
<td>15.6</td>
<td>14.5</td>
<td>81.0</td>
<td>80.9</td>
<td>89.1</td>
</tr>
<tr>
<td>Ba</td>
<td>540</td>
<td>784</td>
<td>748</td>
<td>427</td>
<td>519</td>
<td>661</td>
<td>372</td>
<td>110</td>
<td>131</td>
<td>20.3</td>
<td>24.2</td>
<td>28.1</td>
</tr>
</tbody>
</table>

RetEcc = Retrogressed eclogite

b.d.l. = below detection limit