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Abstract We evaluate the influences of biological carbon export, physical circulation, and temperature-
driven solubility changes on air-sea CO2 flux across the North Pacific basin (35°N–50°N, 142°E–125°W)
throughout the full annual cycle by constructing mixed layer budgets for dissolved inorganic carbon (DIC)
and pCO2, determined on 15 container ship transects between Hong Kong and Long Beach, CA, from 2008 to
2012. Annual air-sea CO2 flux is greatest in the western North Pacific and decreases eastward across the basin
(2.7� 0.9mol Cm�2 yr�1 west of 170°E, as compared to 2.1� 0.3mol Cm�2 yr�1 east of 160°W). East of
160°W, DIC removal by annual net community production (NCP) more than fully offsets the DIC increase due
to air-sea CO2 flux. However, in the region west of 170°E influenced by deep winter mixing, annual NCP only
offsets ~20% of the DIC increase due to air-sea CO2 flux, requiring significant DIC removal by geostrophic
advection. Temperature-driven solubility changes have no net influence on pCO2 and account for <25% of
annual CO2 uptake. The seasonal timing of NCP strongly affects its influence on air-sea CO2 flux. Biological
carbon export from the mixed layer has a stronger influence on pCO2 in summer when mixed layers are
shallow, but changes in pCO2 have a stronger influence on air-sea CO2 flux in winter when high wind speeds
drive more vigorous gas exchange. Thus, it is necessary to determine the seasonal timing as well as the
annual magnitude of NCP to determine its influence on ocean carbon uptake.

1. Introduction

The ocean currently absorbs 26% of all anthropogenic carbon emissions [Le Quéré et al., 2015], slowing global
climate change by reducing carbon accumulation in the atmosphere and modifying marine chemistry by
redistributing this carbon into the ocean. Much attention has thus been focused on understanding the
mechanisms controlling the rates and spatial patterns of ocean carbon uptake [e.g., Takahashi et al., 2002,
2009; Wanninkhof et al., 2013; Landschützer et al., 2014]. There are three main mechanisms that drive
exchange of CO2 between the ocean and the atmosphere: chemical effects due to temperature- and
salinity-dependent variation in the solubility of CO2 in seawater; biological effects due to fixation and export
of organic carbon and biogenic CaCO3 from the surface ocean; and physical effects due to advection andmix-
ing, which can sequester carbon from the atmosphere by transporting CO2 absorbed at the surface into the
deep ocean. Understanding the relative roles of these chemical, physical, and biological processes is neces-
sary to improve our ability to mechanistically predict how the ocean carbon sink will respond to and exert a
feedback influence on increasing atmospheric CO2 concentrations and climate changes projected for the
21st century [e.g., Roy et al., 2011; Ciais et al., 2013; Hauck et al., 2015].

The North Pacific is a major sink for atmospheric CO2, featuring a band of strong CO2 uptake at the transition
zone between the subarctic gyre to the north and the subtropical gyre to the south [Takahashi et al., 2009]
(Figure 1). Previous studies have used a variety of observational and analytical approaches to quantify the
contributions of temperature-driven solubility effects, physical circulation, and biological carbon export to
the North Pacific carbon sink. Takahashi et al. [2002] presented a simple approach to separate temperature
and non-temperature effects on observed seasonal cycles of surface ocean partial pressure of CO2 (pCO2).
Applying this approach to both observations and global biogeochemical model output reveals opposite-
phase temperature-driven and non-temperature-driven seasonal cycles. Temperature effects dominate in
the subtropical and much of the eastern subarctic North Pacific and non-temperature effects of biological
pCO2 drawdown and physical pCO2 supply dominate in the high-latitude and western subarctic North
Pacific, with a region of more complex balance at the interface between these two regimes [Takahashi
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et al., 2002; Chierici et al., 2006; McKinley et al., 2006]. Recent work explicitly separating non-temperature
effects into physical and biological components concluded that despite their large effect on the seasonal
cycle, temperature-driven changes in solubility drive only a small portion of annual CO2 uptake, with geos-
trophic advection joining biological carbon export as the dominant drivers of strong CO2 uptake and setting
the location of the strong transition zone CO2 sink [Ayers and Lozier, 2012].

Opportunities to evaluate seasonal and annual effects on the ocean carbon sink over a basin-wide scale using
direct measurements of both carbonate chemistry and biological carbon export rates are rare. Previous
observation-based basin-scale analyses have combined carbonate chemistry measurements from repeat
ship of opportunity transects with estimates of biological carbon export based on seasonal nitrate drawdown
[Wong et al., 2002; Chierici et al., 2006] or used climatological carbonate chemistry data and estimated biolo-
gical carbon export from satellite-based primary production and export efficiency algorithms [Ayers and
Lozier, 2012]. These approaches are limited, however, by discrepancies between satellite- and geochemical
observation-based estimates of seasonal biological carbon export [Palevsky et al., 2016a] and the inability
of either satellite-based estimates or measurements of nitrate drawdown to account for the fraction of sea-
sonally exported organic matter that is subsequently ventilated back to the atmosphere as CO2 during deep
winter mixing, which has a strong influence on annual biological carbon export in the western North Pacific
[Palevsky et al., 2016b].

In this study, we use measurements of the complete carbonate chemistry system on 15 basin-wide transects
across the North Pacific on ships of opportunity to quantify the rate and the physical, chemical, and biological
drivers of air-sea CO2 flux across the entire North Pacific throughout the full annual cycle. Seasonal and
annual rates of biological carbon export (defined as net community production, or NCP) have recently been
determined based on measurements of dissolved O2/Ar gas ratios measured on the same set of ship of
opportunity transects [Palevsky et al., 2016b]. The combination of measured carbonate chemistry with O2/
Ar-based estimates of NCP on a basin-wide scale throughout the full annual cycle provides a unique oppor-
tunity to resolve the role of biological carbon export in driving the North Pacific Ocean carbon sink.

2. Regional Setting

Carbonate chemistry data presented here are interpreted in the context of three broad regions across the
North Pacific, as defined by Palevsky et al. [2016b]: the Kuroshio, west of 170°E, partially influenced by the
Kuroshio, Oyashio, and Kuroshio Extension currents; the Western region, between 170°E and 160°W; and
the Eastern region, east of 160°W (Figure 1). These regions include portions of both the physical transition
zone between the subarctic and subtropics between 32°N and 42°N [Roden, 1991] and the high-nutrient
low-chlorophyll subarctic gyre to the north [Harrison et al., 2004]. Superimposed on these physical gradients,
the transition zone chlorophyll front migrates seasonally across the region, with its southernmost extent in
February largely south of our three study regions, while its northernmost extent in August lies at ~40°N, in
the middle of our regions [Polovina et al., 2001; Ayers and Lozier, 2010].

Our regional division scheme focuses on analysis of east-west basin-wide trends. The western basin is more
dynamically complex, with portions of this region influenced both by strong eastward geostrophic transport

Figure 1. Locations of the three container ship sampling regions are outlined in black (from west to east, the Kuroshio,
West, and East) and shown over a map of climatological mean annual air-sea CO2 flux (mol Cm�2 yr�1) normalized to
the year 2000 (data from Takahashi et al. [2009]).
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by the Kuroshio Extension and by deep winter mixing (<200m) [Jayne et al., 2009; Ohno et al., 2009]. The
eastern side of the basin experiences weaker geostrophic transport and has a strong permanent halocline
at ~120m that limits the extent of winter mixing [Harrison et al., 1999]. Primary production rates, as deter-
mined by analysis of triple oxygen isotope samples collected along the same container ship transects
described in this study, are greatest in the Kuroshio and decrease eastward across the basin, likely due both
to greater nutrient supply from deeper winter mixing and greater aeolian dust (iron) supply in the west
[Palevsky et al., 2016b]. Analysis of dissolved O2/Ar gas ratios measured on the same samples indicate that
spring through fall NCP rates are also greatest in the Kuroshio and decrease eastward across the basin.
However, wintertime O2/Ar measurements indicate that much of the seasonally exported organic material
is subsequently remineralized and is ventilated back to the atmosphere during winter mixing. Winter mixed
layer depths and thus the fraction of seasonally exported material that is ventilated to the atmosphere as CO2

increase westward across the basin, such that annual NCP rates integrated to the winter ventilation depth
(defined as the deepest depth ventilated to the atmosphere during winter mixing) are greatest in the east
and decrease westward across the basin, yielding the opposite trend to productive season export [Palevsky
et al., 2016b].

3. Methods
3.1. Sample Collection and Measurement

Samples for carbonate chemistry analysis were collected from shipboard seawater intake (10m depth) on 15
basin-wide transects of the North Pacific between Hong Kong and Long Beach, California, on board the M/V
OOCL Tianjin and the M/V OOCL Tokyo between October 2008 and December 2012 (Figures 1 and S1 in the
supporting information). Sea surface temperature (SST) and salinity (S) at the time of sample collection were
determined using a Sea-Bird Electronics SBE45 thermosalinograph installed in the ship’s seawater intake.
Carbonate chemistry sampling locations largely correspond with locations of sample collection for analysis
of dissolved O2/Ar ratios as a tracer of net community production (NCP), as presented by Palevsky et al.
[2016b], allowing us to interpret carbonate chemistry data alongside NCP results.

Samples for dissolved inorganic carbon (DIC) analysis were collected on all cruises into 250mL bottles with
greased ground glass stoppers and poisoned with 100μL of saturated mercuric chloride solution. DIC
concentrations were determined in the laboratory through a combination of manometric measurements
[Quay and Stutsman, 2003] (n=320) and measurements with an Apollo SciTech AS-C3 IR-based DIC analyzer
(n= 138). Certified reference materials (Andrew Dickson, UCSD) were used for calibration and determination
of sample-specific measurement error for all DIC measurements using the AS-C3 analyzer, with mean uncer-
tainty of �4μmol kg�1. Comparison of duplicate samples analyzed both manometrically and with the AS-C3
analyzer (n=111) agree to within 1� 9μmol kg�1 and indicate uncertainty of� 8μmol kg�1 in the
manometric measurements.

A second carbonate chemistry parameter was determined for all locations with DIC measurements. For
transects from 2008 to 2010, pCO2 was measured using an automated underway IR-detection-based system,
which determines seawater pCO2 to �2μatm [Feely et al., 1998; Pierrot et al., 2009; data available online at
http://www.pmel.noaa.gov/co2/story/Long+Beach+to+Hong+Kong]. Measurements from this system were
made continuously along the cruise tracks and were extracted at locations corresponding to DIC sample
collection. For transects in 2011–2012, the underway pCO2 systemwas not used and instead discrete samples
were collected to determine total alkalinity (TA) at DIC sampling locations, following the same collection pro-
cedures as for DIC. TA samples were measured using an automated, open-cell potentiometric titration system
[Dickson et al., 2007] (SOP 3b), with sample-specific measurement error quantified based on certified
reference materials (Andrew Dickson, UCSD) measured with each sample batch (mean uncertainty of
�2μeq kg�1). For a small fraction of DIC sampling locations (n= 51), neither underway pCO2 nor discrete
measurements of TA were available due to issues with the underway pCO2 system or lost samples during
TA analysis. For these sampling locations, TA was determined using regional TA-salinity relationships deter-
mined from the measured TA samples (Figure S2).

For all locations, the combination of DIC with either TA or pCO2 fully constrains the carbonate chemistry
system. The parameter not measured (either TA or pCO2) was calculated for each sampling location using
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the program CO2sys [van Heuven et al., 2011] with the carbonate constants of Mehrbach et al. [1973] refit by
Dickson and Millero [1987]. These constants are also used in all carbonate chemistry calculations throughout
this work. Uncertainty in each calculated carbonate chemistry parameter was determined using a Monte
Carlo approach, where 3000 calculations were made with CO2sys while allowing the two carbonate chemis-
try input parameters to vary according to sample-specific measurement uncertainty. Mean uncertainty in TA
calculated from DIC and pCO2 is �9μeq kg�1 and mean uncertainty in pCO2 calculated from DIC and TA is
�16μatm. Seasonal mean DIC, TA, and pCO2 were calculated for each region, with methodological uncer-
tainty (1σ) determined using a Monte Carlo 3000-simulation analysis where each individual sampling location
value varied according to sample-specific measurement uncertainty.

The remainder of this paper focuses on processes influencing DIC and pCO2. A corresponding budget show-
ing processes influencing TA, which are less well constrained from this data set, is presented in the
supporting information.

3.2. Processes Influencing DIC and pCO2

Seasonal changes in observed DIC concentrations in the surface mixed layer (mmolm�3 d�1) are influenced
by air-sea CO2 flux (Gas), biological export of organic carbon (net community production, or NCP), biological
production of calcium carbonate (CaCO3), and physical addition or removal of DIC due to advection and
mixing (Physics).

∂DIC
∂t

¼ ∂DIC
∂t

����
Gas

þ ∂DIC
∂t

����
NCP

þ ∂DIC
∂t

����
CaCO3

þ ∂DIC
∂t

����
Physics

(1)

Each term in equation (1) is calculated seasonally for each of the three regions shown in Figure 1. Seasonal
fluxes for the Gas, NCP, and CaCO3 terms (mmolm�2 d�1; details of flux estimation methods for each term
given below) are converted to influences on the seasonal DIC concentration (μmol kg�1 d�1) by multiplying
by the regional mean ρ

MLD in each season, where ρ is the temperature- and salinity-dependent seawater

density and MLD is the mixed layer depth, as determined by 0.125 kgm�3 density increase from the surface
[Monterey and Levitus, 1997] in World Ocean Atlas 2013 (WOA, https://www.nodc.noaa.gov/OC5/woa13)
gridded temperature and salinity fields. Uncertainty in MLD estimates is calculated as the standard error
2σffiffi
n

p
� �

of themean for each season in each region. The physical influence of advection andmixing is calculated

as the residual based on estimates of all other terms in equation (1).

Seasonal changes in observed pCO2 in the surface mixed layer are influenced by all factors that influence DIC,
as well as effects of temperature and salinity on the solubility of CO2.

∂pCO2

∂t
¼ ∂pCO2

∂t

����
Temp

þ ∂pCO2

∂t

����
Sal

þ ∂pCO2

∂t

����
Gas

þ ∂pCO2

∂t

����
NCP

þ ∂pCO2

∂t

����
CaCO3

þ ∂pCO2

∂t

����
Physics

(2)

The individual right-hand side (RHS) terms can each be calculated following equations (3)–(7):

∂pCO2

∂t

����
Temp

¼ ∂SST
∂t

� �
�pCO2 0:0423 °C�1

� 	
(3)
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� �
� pCO2
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1:6ð Þ (4)
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����
NCP
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∂pCO2
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∂pCO2
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����
CaCO3

¼ ∂DIC
∂t

����
CaCO3

 !
∂pCO2

∂DIC

� �
þ 2

∂pCO2

∂TA

� �
 �
(7)

The temperature- and salinity-dependences of CO2 in equations (3) and (4) are from Takahashi et al. [1993]
and Sarmiento and Gruber [2006], respectively (note that the salinity dependency value accounts for effects
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of freshwater balance as well as the direct salinity effect). The air-sea CO2 flux (Gas), NCP, and CaCO3 depen-
dencies in equations (5)–(7) represent changes to DIC and TA concentrations in the surface mixed layer,
which in turn affect pCO2. The influence of TA changes on pCO2 are given based on the known stoichiometric
relationships between DIC and TA changes for each process, where gas exchange does not affect TA, NCP
increases TA by 17mol for each 117mol of DIC fixed to organic carbon [Anderson and Sarmiento, 1994],
and CaCO3 production decreases TA by 2mol for each mole CaCO3 produced due to removal of the doubly
charged CO3

2� ion. Sensitivity of pCO2 to DIC and TA changes in equations (5)–(7), based on the Revelle and
Alkalinity factors, is given by equations (8) and (9), respectively:

∂pCO2

∂DIC
¼ Revelle Factor�pCO2

DIC
(8)

∂pCO2

∂TA
¼ Alkalinity Factor�pCO2

TA
(9)

The Revelle and Alkalinity factors are defined as ΔpCO2=pCO2

ΔC=C , where C is DIC or TA for the Revelle or Alkalinity

factors, respectively. These values are calculated using CO2sys and perturbations of �1μmol kg�1 to mea-
sured DIC and TA [van Heuven et al., 2011]. Seasonal mean values for each region are calculated for each
individual term in equations (3)–(9) from the compilation of all discrete sample measurements. The physical
influence of advection and mixing is calculated as the residual based on estimates of all other terms in
equation (2), the same approach used to calculate physical influences in the DIC budget.
3.2.1. Time Rate of Change
To determine the DIC and pCO2 time rate of change tendencies in equations (1) and (2) as well as the SST and
salinity time rate of change tendencies in equations (3) and (4), all surfacemixed layer measurements for each
region are compiled into a single composite year, with the seasonal cycle determined by fitting simple har-
monic functions using a least squares approach. The derivatives of these harmonic fits for the day of the year
corresponding to collection of each discrete sample are compiled and used to calculate the seasonal mean
time rate of change tendency of mixed layer DIC, pCO2, SST, and S in each season for each of the three regions.
Methodological uncertainty in the time rate of change of DIC and pCO2 is calculated following a Monte Carlo
approach based on 3000 iterations computing harmonic fits to the composite annual data while allowing
each individual sampling location value to vary according to sample-specific measurement uncertainty.

3.2.2. Air-Sea CO2 Flux
The rate of air-sea CO2 gas flux is calculated from the difference in pCO2 between the atmosphere and the
surface ocean as

∂DIC
∂t

����
Gas

¼ kCO2�K0� pCO2;atmos � pCO2;ocean
� 	�ρ (10)

where kCO2 (md�1) is the air-sea gas transfer velocity for CO2, K0 (mol kg�1μatm�1) is the temperature- and
salinity-dependent solubility of CO2 [Weiss, 1974], and ρ is the seawater density (kgm�3). When atmospheric
pCO2 exceeds (is less than) surface ocean pCO2, gas exchange causes the value of ∂DIC∂t

��
Gas to be positive (nega-

tive). Air-sea CO2 flux rates are calculated for each individual discrete sample and then compiled to calculate
mean values in each season for each of the three regions.

The value of pCO2,atmos was determined for the time and location of each discrete sample measurement of
pCO2,ocean using NOAA Earth Systems Research Laboratory CarbonTracker (CT2015; http://www.esrl.noaa.
gov/gmd/ccgg/carbontracker) atmospheric CO2 mole fraction data on a global 3° × 2° grid, averaged daily
over the lowest two atmospheric pressure levels, and converted to a partial pressure of CO2 using
NCEP/NCAR reanalysis daily average atmospheric surface pressure (http://www.esrl.noaa.gov/psd/data/
gridded/data.ncep.reanalysis.html), with an estimated uncertainty of �2μatm. Daily wind speed data from
the NOAA National Climactic Data Center’s multiple-satellite Blended Sea Winds product (https://www.
ncdc.noaa.gov/oa/rsad/air-sea/seawinds.html) were used to calculate kCO2 for the time and location of each
discrete sample following the Nightingale et al. [2000] relationship between kCO2 and wind speed and the
Reuer et al. [2007] weighting scheme. Uncertainty in the air-sea gas exchange rate is estimated by assuming
that the majority of uncertainty results from the parameterized relationship between gas exchange rate (kCO2)
and wind speed and that the spread between the air-sea gas exchange rates calculated from the Liss and
Merlivat [1986] and Wanninkhof [1992] equations represents 95% of the variability (�2σ) in kCO2 [Palevsky
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et al., 2013], yielding a mean uncertainty in kCO2 of �14% over all discrete sample locations in the data set.
Total methodological uncertainty in seasonal and annual mean air-sea CO2 flux in each region is determined
with a Monte Carlo analysis including measurement uncertainty in atmospheric pCO2, sample-specific uncer-
tainty in seawater pCO2, and uncertainty from estimation of the air-sea gas transfer rate.
3.2.3. Net Community Production and CaCO3 Production
Biological processes influence DIC and pCO2 through export of biologically fixed organic carbon (NCP) and
inorganic calcium carbonate (CaCO3). NCP for each of the three sampling regions, calculated both to the sea-
sonally varyingmixed layer depth and to the winter ventilation depth, has previously been determined based
onmeasurements of dissolved O2/Ar gas ratios made on the same transects as carbonate chemistry measure-
ments analyzed here (full details are in Palevsky et al. [2016b]). O2/Ar samples for the NCP analysis were
measured at most stations with carbonate chemistry measurements included in the analysis in this paper
(88%), as well as at a number of additional locations (n=271) along the same transects where carbonate
chemistry measurements are not available. We use NCP rates determined at all sampling locations with
O2/Ar because NCP rates determined only from the locations with carbonate chemistry samples differ
minimally from those calculated from the full data set over the spring through fall productive season (differ-
ences of 0–10%, all well within the uncertainty bounds of the NCP estimates).

Since spatial and temporal variability in our study regions precludes direct estimation of CaCO3 production
rates from DIC and TAmass balance, we use CaCO3 production rates based on published estimates of the par-
ticulate inorganic carbon (PIC):particulate organic carbon (POC) ratio and O2/Ar-based regional estimates of
NCP. We assume PIC:POC ratios of 0.1, 0.2, and 0.3 for the Kuroshio, Western, and Eastern regions, respec-
tively. PIC:POC for the Kuroshio region is based on recent observational estimates at the Kuroshio
Extension Observatory [Fassbender, 2014], which also match estimates of the global mean PIC:POC ratio
[Jin et al., 2006] and are consistent with previous regional analysis indicating low calcification rates in the wes-
tern North Pacific [Wong et al., 2002]. Observational estimates in the eastern subarctic North Pacific have
found PIC:POC ratios above the global mean, with the mean value of 0.3 for the Eastern region taken from
multiple observation-based estimates at Ocean Station Papa [Fassbender et al., 2016]. We assume an inter-
mediate value for the Western region (0.2), where region-specific observational estimates are lacking.
Multiplying these PIC:POC ratios by O2/Ar-based seasonal NCP rates in each region yields estimated rates
of CaCO3 production of 0.4, 0.7, and 0.9molm�2 yr�1 in the Kuroshio, Western, and Eastern regions, respec-
tively. This approach implicitly assumes that all NCP is exported as POC rather than as dissolved organic
carbon which likely overestimates CaCO3 export (since dissolved organic carbon contributes on order
~20% to global NCP) [Hansell and Carlson, 1998], but the uncertainty in this assumption is less than that in
the PIC:POC values. We assume 100% uncertainty in estimated seasonal CaCO3 production rates for
all regions.
3.2.4. Uncertainty Analysis
We quantify uncertainty in each term in equations (1) and (2) resulting from both methodological error and
undersampling bias. Methodological uncertainties in seasonal and regional mean carbonate chemistry, the
time rate of change terms, and air-sea CO2 flux rates are described above. Sampling bias is calculated based
on comparison between regional mean satellite-based SST and chlorophyll concentrations for each season
determined only from the times and cruise track locations where discrete samples were collected and those
determined using all grid points within each region sampled continuously from 2008 to 2012 (Moderate
Resolution Imaging Spectroradiometer 1/6° × 1/6° monthly data provided by the Oregon State Ocean
Productivity group, http://www.science.oregonstate.edu/ocean.productivity). This is the approach used pre-
viously by Palevsky et al. [2016b] to determine sampling bias in NCP estimates. Sampling biases for the set of
sampling locations with carbonate chemistry data used in this analysis are similar to those found in the O2/Ar
discrete sampling dataset evaluated by Palevsky et al. [2016b] (Figure S3). Undersampling bias in our
estimates of air-sea CO2 flux and in the time rate of change of both DIC and pCO2 is calculated as the mean
percent difference between satellite-based SST and chlorophyll concentrations calculated over the entire
region and season versus those calculated using only the times and locations of our discrete sample collec-
tion. Undersampling bias in temperature and salinity effects on pCO2 (equation (3)) are calculated solely from
the mean percent difference between fully sampled and discrete sample-based SST. The combined effects of
uncertainty in carbonate chemistry estimates and in gas exchange, NCP, and CaCO3 production rates in equa-
tions (5)–(7) are propagated following standard analytical formulas. The magnitude of DIC physical supply is
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determined as the residual term in both equations (1) and (2), and the error in this term is determined by pro-
pagating error from each individual term.

4. Results and Discussion
4.1. Seasonal Cycle of DIC and pCO2

DIC concentrations in the mixed layer show similar seasonal cycle timing in all three regions, with an annual
maximum in spring and a minimum in fall (Figure 2 and Table 1). This is consistent with biological removal of
DIC during the spring through fall productive season and physical supply of DIC from winter mixing and
vertical diffusion. The amplitude of the DIC seasonal cycle increases westward across the basin, consistent
with westward increases in both summertime NCP and winter mixed layer depths and with previous obser-
vations in the region [Wong et al., 2002].

Mixed layer pCO2 is lower than atmospheric pCO2 (394� 5μatm) for the majority of the year in all three
regions and follows a seasonal cycle offset from that of DIC, with a maximum in summer and minimum in
winter (Figure 2 and Table 1). Variability of individual discrete sample measurements around the mean
seasonal cycle is greater for pCO2 than for DIC and, in contrast to DIC, the seasonal cycle amplitude for
pCO2 is lower in the Kuroshio region than the West and East (amplitudes in the Kuroshio, West, and East,
respectively, are 36� 51, 52� 37, and 56� 38μatm for pCO2 and 87� 36, 64� 18, and 35� 20μmol kg�1

for DIC). Previous global-scale analysis has demonstrated that pCO2 seasonal cycles reflect the combined
effects of two offsetting processes: temperature effects which increase pCO2 during summertime and

Figure 2. Composite annual cycle for (top row) DIC and (bottom row) seawater pCO2 in each region. Black dots show all discrete sample measurements in a given
region (two samples with pCO2< 250 μatm and seven samples with pCO2> 500 μatm are outside the y axis bounds). The solid colored lines are harmonic fits
describing the annual cycle and the dashed colored lines show the harmonic fit� root-mean-square error. For pCO2, the solid gray line shows the pCO2 seasonal
cycle normalized to mean annual SST for each region and the dashed black line shows atmospheric pCO2.
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decrease pCO2 during wintertime, and non-temperature effects which decrease pCO2 during summer due to
biological drawdown and increase pCO2 in winter due to vertical physical supply of high-pCO2 waters, with
temperature effects dominating in the subtropics and non-temperature effects dominating in the subarctic
North Pacific [Takahashi et al., 2002]. Our observed pCO2 seasonal cycle reflects the competing effects of both
processes at the interface between the subtropical and subarctic regimes which both mute the amplitude of
the seasonal cycle and increase variability.

To evaluate the pCO2 seasonal cycle independent of the temperature effect we calculate the temperature-
normalized pCO2 seasonal cycle at the mean annual SST for each region (Figure 2, calculated following equa-
tion (1) from Takahashi et al. [2002]: pCO2 at Tmean = pCO2,obs × exp[0.0423(Tmean� Tobs)], where “obs” and
“mean” indicate the observed and annual mean values, respectively). The coincident seasonal cycles in
temperature-normalized pCO2 and DIC (Figure 2) imply that the lag between the pCO2 and DIC maxima
results from the temperature effect on pCO2. Furthermore, the westward increase in the amplitudes of DIC
and temperature-normalized pCO2 indicates that the non-temperature effects on pCO2 are caused by the
same processes causing seasonal changes in DIC.

4.2. Factors Influencing the Seasonal Cycle of Mixed Layer DIC and pCO2

To quantitatively evaluate the factors influencing the observed seasonal cycles in mixed layer DIC and pCO2,
we consider the role of each component term in equations (1) and (2) for DIC and pCO2, respectively (Figure 3).
Air-sea CO2 flux drives a small but steady increase in mixed layer DIC and pCO2 via net uptake of atmospheric
CO2 throughout the year except in summer in the Western and Eastern regions, when the ocean outgases
CO2. NCP is the primary factor driving spring through fall decreases in both DIC and pCO2. While both NCP
and CaCO3 production lead to a net removal of DIC, CaCO3 production causes a net increase in pCO2 by
decreasing TA in a 2:1 ratio to DIC. However, even in the East with the largest specified PIC:NCP ratio across
the basin of 0.3, CaCO3 production only offsets ~20% of the pCO2 drawdown due to NCP. The temperature
effect increases pCO2 during periods of warming in spring and summer and decreases pCO2 during fall
and winter cooling. The large temperature-driven increase in pCO2 during summer largely offsets the NCP-
driven pCO2 drawdown, consistent with previous analysis of regional pCO2 observations [Chierici et al.,
2006]. The westward increasing seasonal cycle in SST amplifies the offset in tandemwith westward increasing
productive season NCP rates and produces a lower amplitude seasonal cycle in observed pCO2 than in DIC

Table 1. Summary of Regional Mean Carbonate Chemistry and Air-Sea CO2 Flux Rates Across the North Pacifica

No. of Samples DICb (μmol kg�1) TAb (μmol kg�1) pCO2
b (μatm) Air-Sea CO2 flux

c

Kuroshio (142°E–170°E)

Spring (MAM) 24 2042� 1 (31) 2264� 1 (18) 360� 4 (43) 5.7� 2.5
Summer (JJA) 17 2026� 1 (45) 2239� 1 (18) 371� 3 (101) 0.9� 0.4
Fall (SON) 27 1982� 1 (31) 2237� 2 (17) 333� 2 (38) 8.7� 5.2
Winter (DJF) 36 2051� 1 (42) 2255� 1 (25) 348� 2 (28) 14.8� 2.6
Annual 104 2.7� 0.9

West (170°E–160°W)
Spring (MAM) 27 2065� 1 (10) 2230� 1 (16) 364� 3 (19) 6.8� 1.6
Summer (JJA) 17 2051� 1 (13) 2205� 1 (8) 420� 4 (57) �2.4� 0.7
Fall (SON) 27 2001� 1 (14) 2222� 1 (17) 227� 2 (15) 10.2� 1.7
Winter (DJF) 27 2052� 1 (15) 2237� 1 (21) 356� 3 (30) 10.6� 2.1
Annual 98 2.3� 0.4

East (160°W–125°W)
Spring (MAM) 50 2017� 1 (23) 2225� 1 (21) 332� 2 (37) 11.0� 1.6
Summer (JJA) 20 2012� 1 (23) 2201� 1 (7) 414� 4 (54) �1.0� 0.3
Fall (SON) 39 1982� 1 (12) 2208� 2 (8) 363� 3 (28) 4.6� 1.0
Winter (DJF) 36 2007� 1 (18) 2213� 1 (19) 353� 2 (17) 8.8� 1.5
Annual 145 2.1� 0.3

aMAM=March–May, JJA = June–August, SON = September–November, and DJF = December–February.
bResults are given as mean� uncertainty, reflecting methodological error in individual measurements. 1σ variability

about the mean is given in parentheses, reflecting regional variability.
cSeasonal rates for air-sea CO2 flux are given in mmol Cm�2 d�1and annual rates are in mol Cm�2 yr�1. Results are

given as mean� uncertainty, reflecting both methodological error and sampling bias (see text for details).
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(Figure 2). The effect of seasonal changes in salinity on pCO2 is negligible and therefore not shown in Figure 3
or further discussed in the results.

Seasonal changes in mixed layer depth (Figure S4) vary the effect of air-sea and biological carbon fluxes on
mixed layer DIC concentrations and pCO2, with effects amplified during the stratified summer season when
there is a smaller volume of water in the mixed layer and dampened in the winter when there is a larger
volume of water in the mixed layer. Therefore, even though the rate of air-sea CO2 flux is greatest in winter
in the Kuroshio and Western regions, its influence on DIC and pCO2 in winter is less than half that in fall
because winter mixed layer depths are 2–4 times deeper. Similarly, the influence of biological removal of
DIC via NCP is enhanced in the summer even though NCP rates per square meter are greater in spring and
fall than in summer.

Seasonal patterns of physical supply, calculated as the residual term in both equations (1) and (2), are similar
for DIC and pCO2 (Figure 3). Broadly, this seasonal pattern shows a minimum in physical supply of DIC and
pCO2 to the mixed layer in spring and a maximum in fall to winter. TA physical supply (Figure S5) also shows
a similar seasonal pattern of physical supply, though with lower amplitude. The physical supply term includes
both horizontal advection due to geostrophic and Ekman-driven transport as well as vertical supply from dif-
fusive mixing, entrainment, and upwelling. Our approach cannot distinguish the contributions of each of
these individual processes, so for context we turn to previous work in the North Pacific transition zone region
by Ayers and Lozier [2012]. Their work demonstrated that vertical supply of high-DIC waters increases mixed
layer pCO2 during the period of intense entrainment and vertical diffusion from late fall through early spring
[Ayers and Lozier, 2012]. Horizontal advective transport has steady effects throughout the year in the transi-
tion zone region, with Ekman transport supplying high-DIC waters from the north and geostrophic transport
by the Kuroshio and Kuroshio Extension currents supplying low-DIC waters that reduce mixed layer DIC and
pCO2 in the region [Ayers and Lozier, 2012]. Although our calculations of physical supply as a residual term

Figure 3. Seasonal influences on (top row) DIC concentrations and (bottom row) seawater pCO2 in the surface mixed layer in each region, calculated following
equations (1) and (2), respectively. Positive (negative) values represent increases (decreases) in mixed layer DIC and pCO2. The salinity effect on seawater pCO2 is
negligible and is omitted for clarity.

Global Biogeochemical Cycles 10.1002/2016GB005527

PALEVSKY AND QUAY INFLUENCES ON NORTH PACIFIC OCEAN CO2 UPTAKE 89



cannot separate these individual processes, our overall seasonal cycle of physical supply matches that found
by summing all the physical effects considered by Ayers and Lozier [2012], indicating that we have adequately
captured the key physical influences on DIC and pCO2 in this region.

4.3. Factors Influencing the Annual DIC Budget

Annual influences on DIC are calculated following equation (1) assuming that over a composite annual cycle
∂DIC
∂t ≈0. Annual flux rates are determined for each RHS term in equation (1), with two separate DIC budgets

calculated integrating, first, to the base of the seasonally varyingmixed layer depth and, second, to the winter
ventilation depth. Note that the only two terms that differ between these two depth criteria are NCP and the
residual physical supply term.

Air-sea CO2 flux leads to a net annual increase in ocean DIC inventory in all three regions, with rates of
2.7� 0.9, 2.3� 0.4, and 2.1� 0.3mol Cm�2 yr�1 in the Kuroshio, Western, and Eastern regions, respectively.
These rates are consistent with the spatial trend of westward intensified ocean CO2 uptake across the basin
identified by Takahashi et al. [2009] (Figure 1) but are ~0.6–0.9mol Cm�2 yr�1 (~30–60%) greater than the
rates determined by Takahashi et al. [2009]. The decade-long interval between the Takahashi et al. [2009]
reference year of 2000 and the 2008–2012 sampling period of our study is not long enough to distinguish
potential strengthening of the ocean carbon sink from natural variability [McKinley et al., 2016]. Differences
between our estimates and those of Takahashi et al. [2009] may also result from interpolation choices in
developing the global climatology or from differences in the choice of air-sea gas transfer parameterizations,
as well as actual differences between the measurement time periods.

We account for the effect of winter ventilation on the annual DIC budget by comparing budget terms inte-
grated to the winter ventilation depth and those integrated to the seasonally varying mixed layer depth
(Figure 4). If the annual DIC inventory is computed to the base of the seasonally varying mixed layer (colored
circles in Figure 4), biological export of organic carbon (NCP) removes sufficient DIC to more than counterba-
lance the annual DIC increase due to air-sea CO2 flux. However, integrating the DIC budget to a constant
winter ventilation depth for each region paints a different picture. Although organic carbon export from
the stratified mixed layer in spring through fall is greatest in the Kuroshio and decreases eastward across
the basin, much of this organic material is remineralized below the base of the seasonally stratified mixed
layer and reenters the mixed layer during deep winter mixing in the western basin, ventilating it to the atmo-
sphere [Palevsky et al., 2016b]. Estimates of annual NCP are significantly reduced in the Kuroshio and Western
regions when accounting for winter ventilation, whereas the reduction is small in the Eastern region due a
strong permanent halocline that prevents winter mixing below ~120m (green bars in Figure 4).

When accounting for the effect of winter ventilation in the annual DIC budget, it becomes clear that the
relative roles of NCP and of physical supply of DIC vary considerably across the basin (illustrated in
Figure 5, which highlights the key processes from the DIC budget in Figure 4). NCP remains more than able
to counterbalance the DIC increase due to air-sea CO2 flux in the East. In the Kuroshio region, by contrast,

Figure 4. Annual DIC budget for each region, calculated following equation (1). Positive (negative) values represent
increases (decreases) in surface ocean DIC. Note the differing influences of NCP and physical supply on the DIC budget
integrated to the winter ventilation depth (bars) compared to the DIC budget integrated to the base of the seasonally
varying mixed layer depth (filled circles). See text for discussion.
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~90% of seasonal NCP is remineralized and ventilated back to the atmosphere such that the fraction of NCP
that remains sequestered on an annual basis can only counterbalance a small fraction of the DIC increase due
to air-sea CO2 flux. As a result, physical processes must counterbalance the CO2 input from gas exchange in
the Kuroshio region. According to analysis by Ayers and Lozier [2012], the only physical process that leads to a
net removal of DIC in this region is geostrophic advection, which transports low-DIC subtropical waters north-
ward into the region via the Kuroshio Current and exports high-DIC waters eastward via the Kuroshio
Extension. All other physical processes, including Ekman transport and vertical supply via entrainment, diffu-
sive mixing and upwelling, yield a net supply of DIC. Our calculated physical supply term (residual in equation
(1)) represents the net result of all physical processes. Across the basin, the role of physical processes changes
from being a net DIC sink in the west to a net DIC source in the east (Figure 4), which follows the eastward
decrease in the strength of geostrophic transport by the Kuroshio Extension.

The influence of CaCO3 production on the DIC budget presented here assumes that none of the CaCO3

exported from the seasonally stratified mixed layer dissolves above the winter ventilation depth. Despite
expected faster sinking of CaCO3-ballasted particles [Armstrong et al., 2002; Klaas and Archer, 2002], this is
likely an overestimate of the contribution from CaCO3 production to the annual DIC budget, since recent
sediment trap measurements in the western subarctic gyre show a decrease in CaCO3 flux between 60
and 200m, likely driven by shallow aragonite and calcite saturation depths at 100m and 200m, respectively
[Honda et al., 2015]. However, even without allowing for dissolution of sinking CaCO3 particles, CaCO3

production provides a fairly minor contribution to the annual DIC budget. TA removal by CaCO3 production
is the dominant term in the annual TA budget (Figure S5), indicating the need for improved constraint on
CaCO3 production rates to assess the role of TA physical supply in the region.

4.4. Factors Influencing Annual Mixed Layer pCO2

Annual influences on pCO2 are calculated following equation (2) assuming that over a composite annual

cycle ∂pCO2
∂t ≈0. This simplifying assumption is justified because rates of surface water pCO2 increase in the

North Pacific are < 3μatm yr�1 [Takahashi et al., 2009], which is negligible given the magnitude of other
terms (Figure 6). Annual influences on mixed layer pCO2 are determined for each RHS term in equation (2),
with the roles of NCP and physical supply calculated both with and without accounting for winter ventilation
(Figure 6), as in the annual DIC budget (Figure 4). Note that this calculation is not a mass balance budget, as

Figure 5. Schematic representation of the key processes in the annual DIC budget (Figure 4). All numbers represent annual
carbon fluxes in mol Cm�2 yr�1. Seasonal export represents NCP integrated to the seasonally varying mixed layer depth,
while annual export represents NCP integrated to the winter ventilation depth, with the percent of seasonal export remi-
neralized above the winter ventilation depth depicted in each region. Annual physical supply in the Kuroshio and East is
shown in purple. CaCO3 production and physical transport in the West are omitted for clarity.
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computed for DIC, but instead reflects cumulative effects of seasonal influences on pCO2 throughout the
year. The only terms that differ when accounting for winter ventilation are NCP and the residual physical
supply term, as was the case for the DIC budget.

It is important to note that the impact of a given carbon flux on mixed layer pCO2 depends on mixed layer
depth because the pCO2 change depends on the DIC concentration change (via equation (8)) and the DIC
concentration change depends inversely on mixed layer depth, as described in section 4.2. Thus, a given
NCP flux out of the shallow stratified mixed layer in summer decreases the pCO2 more than the return of this
same flux (as DIC) into a deep mixed layer in winter increases the pCO2. This mixed layer depth effect weights
the annual pCO2 cycle toward summertime NCP and away fromwintertime DIC supply via vertical mixing and
entrainment that ventilates remineralized organic carbon. We approximate the timing of winter ventilation
based on seasonal entrainment rates in each season, which indicate that ~30% of ventilation occurs during
initial mixed layer deepening in fall and 10–20% occurs during continued entrainment in early spring in the
West and East, while the dominant remainder of ventilation occurs during winter. This ventilation lessens the
annual impact of NCP on pCO2 as compared with the estimate not accounting for ventilation of remineralized
seasonally exported carbon (green bars as compared with green filled circles in Figure 6). However, despite
ventilation of 90% and 40% of seasonally exported carbon in the Kuroshio and Western regions respectively,
the reductions in the influence of NCP on annual drawdown of surface ocean pCO2 are only 30% and 20%,
respectively. This strong effect of seasonal timing on the ability of NCP to influence surface ocean pCO2 is
due to the seasonal cycle of mixed layer depths, where winter mixed layers are 8 times deeper than summer
mixed layers in the Kuroshio and 5 times deeper in the West and East (Figure S4).

To further illustrate the importance of seasonal timing, we conduct a thought experiment in which the total
annual NCP rate determined at the winter ventilation depth is unchanged but the NCP timing is redistributed
seasonally. In this thought experiment, rather than allowing organic material to be seasonally exported and
subsequently remineralized and ventilated as mixed layers deepen, NCP rates are proportionally reduced
from spring through fall (black circles in Figure 6). This scenario significantly diminishes the ability of NCP
to reduce surface ocean pCO2 on an annual basis, although the total annual NCP flux is unchanged from that
in the more realistic ventilation-based calculation of the influence of NCP (green bars in Figure 6). The
thought experiment scenario therefore requires greater removal of pCO2 by physical processes. Since both
scenarios are based on the same annual NCP flux rate, both are consistent with the DIC budget accounting
for the effects of winter ventilation (colored bars in Figure 4) despite their differing effects on pCO2. This
thought experiment, though unrealistic, demonstrates that knowledge of the timing of export and ventila-
tion, as well as the rates, is important for quantifying the influence of NCP and ventilation on mixed layer
pCO2 and thus on the air-sea CO2 flux.

Our analysis indicates that export of organic material (NCP) is the primary process drawing down pCO2 in the
three regions (Figure 6) although the magnitude of its importance depends on the timing of the physical
processes ventilating remineralized organic matter back to the mixed layer as DIC, as discussed above. Our

Figure 6. Annual influences on pCO2 in the surface mixed layer in each region, calculated following equation (2). Positive
(negative) values represent increases (decreases) in mixed layer pCO2. The salinity effect is negligible and is omitted for
clarity. The colored circles for NCP and physical supply integrate effects on the surface mixed layer shown in Figure 3. The
colored bars account for winter ventilation, with a best estimate of when that ventilation occurs based on seasonal
entrainment rates (see text for details). The black dots represent a thought experiment scenario where the total annual NCP
rate is equivalent to the winter ventilation estimate shown in the colored bars, but results from reduced productive season
NCP rather than winter ventilation.
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estimates indicate that physical processes cause a net annual increase in pCO2 in all three regions (86� 222,
95� 145, and 74� 86μatm yr�1 in the Kuroshio, Western, and Eastern regions, respectively), albeit with large
uncertainties since physical supply is calculated as the residual in equation (2) with uncertainty therefore
depending on errors in all other terms, including significant uncertainty in seasonal MLD estimates. These
results are consistent with those of Ayers and Lozier [2012] who estimated that physical processes cause a
net pCO2 increase of 59� 17μatm yr�1 in the transition zone, with pCO2 increases from Ekman transport
and vertical mixing/entrainment more than counteracting the pCO2 decrease from geostrophic advection.

The influence of CaCO3 production on pCO2 is substantially smaller than the influence of NCP and physical
processes (Figure 6). However, it does drive a biological counterpump that annually increases surface ocean
pCO2 at more than half the rate of air-sea CO2 flux in the Eastern and Western regions. Improved estimates of
the rate of CaCO3 production are needed to constrain widely varying literature values and predict potential
future changes in CaCO3 production that could influence the strength of the North Pacific Ocean carbon sink.

4.5. Effects of Seasonality on Annual Air-Sea CO2 Flux

Assessing the drivers of air-sea CO2 flux requires us to consider not only the annual changes in surface ocean
pCO2 (Figure 6) but also the effect of those pCO2 changes in driving CO2 exchange between the surface
ocean and atmosphere. Wintertime increases in CO2 solubility and wind speed-dependent air-sea gas trans-
fer rates (K0 and kCO2 , respectively, in equation (10)) enhance the leverage of winter over summer pCO2

changes in driving air-sea CO2 flux by 4 times, 2.7 times, and 2.9 times in the Kuroshio, Western, and
Eastern regions, respectively. This gas exchange effect, dominated by wind speed-driven changes in kCO2 ,
interacts with the effects of seasonality in mixed layer depth and in biological export and ventilation
described in sections 4.2 and 4.4 as well as the effects of seasonal SST changes on pCO2.

Although the temperature effect is an important influence on the pCO2 seasonal cycle (Figure 3), its influence
on pCO2 over an annual basis is indistinguishable from zero in all regions (Figure 6). This result is consistent
with previous analysis of climatological pCO2 in the North Pacific transition zone [Ayers and Lozier, 2012].
Nevertheless, wintertime increases in K0 and kCO2 magnify the influence of winter temperature-driven
decreases in pCO2 on annual air-sea CO2 flux rates. If K0 and kCO2 were held constant at the annual mean
in each region, annual air-sea CO2 flux would be reduced to 91%, 78%, and 73% of the actual rates in the
Kuroshio, Western, and Eastern regions, respectively. These potential reductions are similar to those
previously estimated for the full transition zone region [Ayers and Lozier, 2012].

In addition to enabling temperature-based solubility changes to drive a portion of the annual ocean carbon
sink, seasonal asymmetries in the leverage of surface ocean pCO2 on air-sea CO2 flux also partially offset the
effects of seasonality in mixed layer depth and NCP timing. Although NCP-driven carbon fluxes from the
shallow summertime mixed layer exert an enhanced influence on pCO2, the ability of this biological carbon
export to drive air-sea CO2 flux is reduced due to lower summertime K0 and kCO2. Similarly, although reminer-
alized organic carbon ventilated during winter has a reduced influence on pCO2 due to deep wintertime
mixed layers, pCO2 changes resulting from this ventilation have an enhanced influence on air-sea CO2 flux
due to higher wintertime K0 andkCO2. Seasonal timing is thus important not only in determining the influence
of carbon fluxes on surface ocean pCO2 but also in determining the influence of pCO2 changes in driving air-
sea CO2 flux.

5. Conclusions

In this study, we have combined measurements of the complete carbonate chemistry system across the
North Pacific basin throughout the full annual cycle with previously described estimates of NCP based on
O2/Ar measurements [Palevsky et al., 2016b] to investigate the relative roles of chemical, physical, and biolo-
gical processes in driving uptake of atmospheric CO2. Air-sea CO2 exchange is an atmospheric CO2 sink (and
source of DIC to the surface ocean) across the North Pacific basin. We find that the annual SST cycle has a
strong effect on the seasonal pCO2 cycle (Figures 2 and 3) but little effect on annual changes in surface ocean
pCO2 (Figure 6) and can account for less than 25% of each region’s annual air-sea CO2 flux, requiring that
physical and biological processes drive annual ocean CO2 uptake.
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The annual DIC budget (Figures 4 and 5) shows an east-west trend across the basin with physical circulation
processes as the dominant DIC sink in the Kuroshio region and NCP as the dominant DIC sink in the East. This
spatial trend is only apparent when accounting for annual rates of NCP calculated to the winter ventilation
depth, which reveal that ~90% of the seasonally exported organic carbon in the Kuroshio region is subse-
quently remineralized and entrained into the mixed layer as DIC during deep winter mixing. Without
accounting for winter ventilation, we would overestimate the influence of vertical DIC supply by counting this
ventilation of remineralized carbon as a physical influence rather than a reduction in annual NCP. The effects
of winter ventilation on surface ocean pCO2 are still substantial but more muted (Figure 6). The influence of
annual NCP on surface ocean pCO2 depends not only on the magnitude of the annual flux but also on its
timing, since an identical flux has a larger influence on mixed layer DIC concentrations and thus pCO2 when
exported from a shallow summer mixed layer than a deep winter mixed layer.

Annual air-sea CO2 flux increases westward across the basin, from 2.1� 0.3mol Cm�2 yr�1 in the East to
2.7� 0.9mol Cm�2 yr�1 in the Kuroshio region. These rates are 4–5 times the global mean rate of ocean
carbon uptake, underscoring the previously recognized role of the North Pacific as a significant sink of
atmospheric CO2 [Takahashi et al., 2009]. Repeated sampling of this region over the coming decades will
be necessary to resolve potential changes to the strength of the region’s ocean carbon sink, with expected
time of emergence for climate-driven changes to air-sea CO2 flux in the seasonally stratified North Pacific
in 2040–2060 [McKinley et al., 2016]. We demonstrate that the biological pump (NCP) plays a key role in
driving the North Pacific Ocean carbon sink and also that the influence of NCP on air-sea CO2 flux depends
not only on the magnitude of organic material export rates but also on the magnitude and timing of mixed
layer deepening during fall and winter and the seasonal cycle in wind speed-driven gas exchange. Seasonal
variations in NCP, mixed layer depth, and wind speed have a particularly strong impact on ocean CO2 uptake
in high-latitude regions with a strong seasonal cycle such as the Kuroshio, where deep winter mixed layers
return a significant fraction of exported organic carbon to the surface ocean, and ultimately atmosphere,
as CO2. Thus, future studies aiming at unraveling the role of the biological pump in driving the ocean CO2 sink
[e.g., Siegel et al., 2016] need to not only focus on estimating the annual NCP rate but also account for the
timing of seasonal export and impact of winter ventilation.
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