Supporting Information for

CHANGES IN SNOW DISTRIBUTION AND SURFACE TOPOGRAPHY FOLLOWING A SNOWSTORM ON ANTARCTIC SEA ICE

Ernesto Trujillo1,2, Katherine Leonard1,2,3, Ted Maksym4, and Michael Lehning2,1

1. School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
2. WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
3. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder CO USA
4. Woods Hole Oceanographic Institution, Woods Hole, MA, USA

Contents of this file

Figures S1 to S5

Introduction

This supplement includes additional figures that highlight details of the terrestrial laser scanning (TLS) dataset and the changes in the surface morphology.
Figure S 1. Location within the 100 m x 100 m plot of the detail areas in Figure S 2-Figure S 5. The detail areas highlight the quality of the topographic data and the changes in the snow distribution patterns as a consequence of the storm.
Figure S 2. Change from the (a) pre-storm to the (b) post-storm conditions (detail 1). Erosion was the dominant process driving the small changes observed, with only some new small dunes present. The detail highlights the small surface roughness patterns captured with the laser scanner.
Figure S 3. Change from the pre-storm (a) to the post-storm (b) conditions (detail 2). The vertical orientation of the newly formed snow dunes is clearly visible along with small surface roughness patterns.
Figure S 4. Change from the pre-storm (a) to the post-storm (b) conditions (detail 3). This detail highlights some of the larger newly formed snow dunes.
Figure S 5. Change from the pre-storm (a) to the post-storm (b) conditions (detail 4). This detail shows a wide spread change in the snow dune patterns aligned vertically along the predominant winds.