Arctic Acoustic Tomography
MIZEX 84

by
Robert C. Spindel, Principal Investigator

April 1985
Technical Report

Funding was provided by the Office of Naval Research under contract number N00014-84-C-0185.

Approved for public release; distribution unlimited.
WHOI-85-15

ARCTIC ACOUSTIC TOMOGRAPHY
MIZEX 84

by

Robert C. Spindel, Principal Investigator

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

April 1985

TECHNICAL REPORT

Funding was provided by the Office of Naval Research under Contract N00014-84-C-0185.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept.

Approval for public release; distribution unlimited.

Approved for Distribution:

Robert C. Spindel, Chairman
Department of Ocean Engineering
Abstract

This is the final report of Contract N00014-84-C-0185 between the Woods Hole Oceanographic Institution and the Office of Naval Research for the contract period 1 January, 1984, to 28 February, 1985. This contract supported an experiment that was conducted in the Norwegian Sea during May and June of 1984 to assess the possibilities of using ocean acoustic tomography as a measuring tool in the Arctic. The object of the experiment was to identify and determine the temporal stability (coherence), and resolvability, of Arctic acoustic paths. Identification refers to the ability to match a pulse arrival with a particular ray path, primarily through computer modelling. Resolvable rays are those that arrive sufficiently far apart in time so as to be distinct and separable. In order to use tomography, rays must be identified, resolved and stable. Unlike the deep temperate ocean, where there are many wholly refracted paths, the upward refracting Arctic sound speed profile causes ray paths to reflect off the ice-covered surface of the permanent pack and the mixed ice-covered and ice-free surface of the marginal ice zones. The reflection process is time-varying and hence leads to resolvability, identification and stability questions that do not arise in the case of entirely refracted paths.

A 224 Hz acoustic source was moored in an ice-free region. It transmitted phase coded, frequency stable signals to receivers fixed on the bottom and receivers drifting with the icepack at ranges of approximately 150 km. The received signals are to be analyzed with respect to identification, resolvability and stability issues.

This contract covered the costs associated with installation and retrieval of the source and preliminary data reduction from the drifting and fixed hydrophones. Detailed data analysis costs are to be covered elsewhere. Nevertheless, preliminary analysis indicates that the received signals, particularly those from paths that interact with the ice-free surface, appear to have sufficient stability for tomographic purposes.
Experiment Summary

An autonomous, moored, acoustic transmitter was deployed on Leg 1 of the USNS Lynch cruise, in May, 1984, to assess the suitability of surface reflected acoustic paths in the Arctic and Marginal Ice Zones for tomographic application. The experiment was conducted as part of the international MIZEX 84 exercise which began in May and ended in August, 1984 (Figure 1).

The source transmitted a 224 Hz carrier, phase modulated by a binary, maximal-length, shift-register sequence, similar to the type of signal transmitted during several previous tomography experiments. Minor adjustments in signalling parameters were made to account for the Doppler shift due to the time-varying ocean surface. The object is to shift the side bands of the signal away from the approximately 0.1 Hz peak of the surface wave spectrum. Table I shows the modulation parameters for this and other tomography experiments.

The signal was received on hydrophones suspended through the ice by an MIT/WHOI scientific party aboard the MV Kvitbjorn, and by hydrophones resting on the bottom which were deployed by a party from NUSC aboard the HU Sverdrup.

The source was moored at a depth of 175 meters in 1207 (corrected) water at 78°59'.3 N, 6°58'.6 E (Figure 2). It began transmitting at 0000Z on Julian day 161 (9 June) and ceased at 0000Z on day 171. The transmission sequence consisted of two hours of continuous emissions starting at 0000Z each day. Following this there were 3 minute transmissions at the start of each hour beginning at 0300Z and lasting through 2300Z. The 224 Hz carrier was phase modulated by a 63 bit binary sequence (Table II). Each digit of the code, which consisted of 14 cycles of the 224 Hz carrier, was phase shifted
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier, f_0 (Hz)</td>
<td>220</td>
<td>220</td>
<td>224</td>
<td>400</td>
<td>400</td>
<td>224</td>
</tr>
<tr>
<td>Digits, N</td>
<td>63</td>
<td>63</td>
<td>127</td>
<td>511</td>
<td>511</td>
<td>63</td>
</tr>
<tr>
<td>Digit duration, d (s)</td>
<td>0.1</td>
<td>0.063</td>
<td>0.0625</td>
<td>0.01</td>
<td>0.01</td>
<td>0.0625</td>
</tr>
<tr>
<td>Sequence duration, $L = \sum d$ (s)</td>
<td>6.3</td>
<td>4.00909</td>
<td>7.9375</td>
<td>5.11</td>
<td>5.11</td>
<td>3.9375</td>
</tr>
<tr>
<td>Repetitions, R</td>
<td>10</td>
<td>16</td>
<td>24</td>
<td>24</td>
<td>42</td>
<td>1823</td>
</tr>
<tr>
<td>Modulation angle, ϕ_0 (degrees)</td>
<td>45</td>
<td>45</td>
<td>75</td>
<td>87.5</td>
<td>87.5</td>
<td>85</td>
</tr>
<tr>
<td>Pulse compression gain (db)</td>
<td>18</td>
<td>18</td>
<td>21</td>
<td>27</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>Coherent averaging gain (db)</td>
<td>10</td>
<td>12</td>
<td>13.8</td>
<td>13.8</td>
<td>16.3</td>
<td>20(?)</td>
</tr>
<tr>
<td>Total signal processing gain (db)</td>
<td>28</td>
<td>30</td>
<td>34.8</td>
<td>40.8</td>
<td>43.8</td>
<td>38(?)</td>
</tr>
<tr>
<td>3 db bandwidth (Hz)</td>
<td>10</td>
<td>15.7</td>
<td>16</td>
<td>100</td>
<td>100</td>
<td>16</td>
</tr>
<tr>
<td>Spectral line spacing (Hz)</td>
<td>0.158</td>
<td>0.249</td>
<td>0.126</td>
<td>0.196</td>
<td>0.196</td>
<td>0.254</td>
</tr>
<tr>
<td>Arrival time error, δt (ms)</td>
<td>1.6</td>
<td>1.8</td>
<td>1.0</td>
<td>0.1</td>
<td>0.06</td>
<td>0.7(?)</td>
</tr>
</tbody>
</table>

TABLE I. Signal parameters for various tomography experiments.

TABLE II. 63 digit code transmitted by the source. A '0' represents a carrier phase shift of $+82.82$ degrees; a '1' represents a shift of -82.82 degrees.
FIGURE 1

Location of 224 Hz acoustic source, and receiving hydrophones. Numbers in parentheses indicate sensor depths.
Depth

140m
- E.C. BUOY
- 3m 1/2" CHAIN (1' lengths)
- SWIVEL
- 41m 3/8" JACKETED WIRE ROPE

181m
- 6m
- 224 Hz SOURCE
- SERIAL #5
- 1m 1/2" CHAIN
- 198m 3/8" JACKETED WIRE ROPE

379m
- 1m
- 2 BENTHOS RELEASES
- 1 INTERROGATOR
- 700m 5/16" KEVLAR

128m 5/16" KEVLAR

1207m
- 3m 1/2" CHAIN
- 2000 lb DISCUS ANCHOR

Tension
Moored

1488
1464
1061
1051
934
784
772
769
759
1241

FIGURE 2
Source mooring configuration.
82.82 degrees depending on whether the digit was a zero or a one. This modulation angle results in a signal with smooth \((\sin x)/x\) spectral envelope and in maximum signal-to-noise ratio upon reception. The total transmission time for an entire 63 digit sequence was 63 digits \(\times 14/224\) seconds/digit = 3.9375 seconds. The once daily two hour transmission consisted of a continuous repetition of this sequence; the hourly three minute transmissions consisted of 48 repetitions.

An infinite repetition of the signal has an autocorrelation function with a single peak at zero delay of width \(14/224 = .063\) s and has no sidelobes. The correlation function is produced upon reception by circular correlation with a stored replica of the transmitted signal. The result of this processing is equivalent to having transmitted a signal pulse of .063 s width, but with 63 times the intensity. The net signal processing gain is therefore \(10 \log (63) = 18\) dB. Additional gain of \(10 \log (N)\) is achieved by coherent averaging \(N\) repetitively transmitted sequences. Table I suggests a gain of 20 dB from this source \((N = 100)\). Both of these processing techniques depend on temporally stable, phase coherent signals. A large part of this experiment was to determine the extent of such stability.

The mooring was equipped with a system to measure the position of the source as the mooring moved in response to tidal and other forcing currents (Figure 3). An acoustic interrogator transmitted 10.5 KHz pulses to transponders fixed to the ocean floor in an equilateral triangle about the base of the mooring. The transponders replied at unique frequencies in the 10 to 14 KHz band, and the round trip travel time of the process was recorded. These times were converted to slant ranges to determine the position of the interrogator (and therefore the source) to an accuracy of about 1-2 meters.
FIGURE 3

Mooring motion monitoring system. The interrogator measures and stores the round trip travel times to each of 3 transponders, thereby establishing three slant ranges and the position of the interrogator.
Results

The acoustic source was deployed successfully; it turned on automatically on June 9 (when listening hydrophones had been installed). Strong signals were received by both the ice-suspended hydrophones and the bottom hydrophones.

The signals received by the ice-suspended hydrophones were subjected to varying Doppler shifts due to the motion (drift) of the ice. The rate varied, but was in the range 1-2 cm/s (0.04kt) in the direction of the source. This motion results in a phase roll that ultimately limits coherent averaging gain. It also obscures the ultimate path stability; it is difficult to say whether phase instabilities are due to ice-drift motion or to fundamental oceanic processes such as surface or ice scatter, internal waves, instabilities in the water column, turbulence, etc.

However, some estimate of the stability can still be obtained from the drifting hydrophone data by normalizing the phase of the receptions with respect to the strongest arrival. This process removes the phase variations of this one path and allows examination of path-to-path stability. An example of a 46 sequence average (181 seconds) processed this way is shown in Figure 4.

Figure 5 is an example of the results obtained with the fixed hydrophone. Here coherent processing gains can be had for much longer averaging periods because there are no unknown phase instabilities due to sensor motion.
FIGURE 4

Drifting Hydrophone - Five consecutive 46 sequence averages. Each represents 46 x 3.9375 = 181.125 s. The five sequences span 15 minutes.
Figure 5: Bottom Fixed Hydrophone. Five consecutive 4.6 second sequence averages. Each represents 46 x 3.9375 s. The five sequences span 15 minutes.
Conclusions

An experiment to test the feasibility of doing acoustic tomography in the upward refracting sound speed environment of the Arctic was performed during MIZEX 84. An acoustic source similar to the type used in previous tomography experiments was deployed in an ice-free region of the Fram Straits and signals were received on hydrophones suspended from the drifting ice pack and from hydrophones lying motionless on the ocean bottom.

The experiment suggests that tomography can be employed in the Arctic and Marginal Ice Zones in much the same way that it is being employed in more temperate seas. It suggests that purely upward refracted paths with reflections from the moving ice-pack, or with reception on hydrophones drifting with the ice, will be difficult to interpret, but that they still can (in theory) be useful. On the other hand, reflection from open water surfaces will not seriously degrade the tomography measurement.

This report only covers the installation of the acoustic source and some very preliminary data analysis. Work is continuing under other ONR contractual arrangements.
Selected References Pertinent to Ocean Tomography

This is the final report of Contract N00014-84-C-0185 between the Woods Hole Oceanographic Institution and the Office of Naval Research for the contract period 1 January, 1984, to 28 February, 1985. This contract supported an experiment that was conducted in the Norwegian Sea during May and June of 1984 to assess the possibilities of using ocean acoustic tomography as a measuring tool in the Arctic. The object of the experiment was to identify and determine the temporal stability (coherence), and resolvability, of Arctic acoustic paths. Unlike the deep temperate ocean, where there are many wholly refracted paths, the upward refracting Arctic sound speed profile causes ray paths to reflect off the ice-covered surface of the permanent pack and the mixed ice-covered and ice-free surface of the marginal ice zones. The reflection process is time-varying and hence leads to resolvability, identification and stability questions that do not arise in the case of entirely refracted paths. This contract covered the costs associated with installation and retrieval of a 224 Hz acoustic source and preliminary data reduction from signals received by drifting and fixed hydrophones. Preliminary analysis indicates that the received signals, particularly those from paths that interact with the ice-free surface, appear to have sufficient stability for tomographic purposes.

17. Document Analysis a. Descriptors
1. Arctic Acoustics
2. Underwater Acoustics
3. Acoustic Tomography

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement:
Approved for publication; distribution unlimited.

19. Security Class (This Report) UNCLASSIFIED
20. Security Class (This Page) UNCLASSIFIED
21. No. of Pages 13
22. Price
Institute of Marine Sciences Library
University of Alaska
O’Neill Building
905 Kuvukuk Ave., North
Fairbanks, AK

Attn: Stella Sanchez-Wade
Documents Section
Scripps Institution of Oceanography
Library, Mail Code C-075C
La Jolla, CA 92093

Hancock Library of Biology & Oceanography
Alan Hancock Laboratory
University of Southern California
University Park
Los Angeles, CA 90089-0371

Gifts & Exchanges
Library
Bedford Institute of Oceanography
P.O. Box 1006
Dartmouth, NS, B2Y 4A2, CANADA

Office of the International
Ice Patrol
c/o Coast Guard R & D Center
Avery Point
Groton, CT 06340

Library
Physical Oceanographic Laboratory
Nova University
8000 N. Ocean Drive
Dania, FL 33304

NOAA-EDIS Miami Library Center
4301 Rickenbacker Causeway
Miami, FL 33149

Library
Skidaway Institute of Oceanography
P.O. Box 13687
Savannah, GA 31416

Institute of Geophysics
University of Hawaii
Library Room 252
2525 Correa Road
Honolulu, HI 96822

Library
Chesapeake Bay Institute
4800 Atwell Road
Shady Side, MD 20876

MIT Libraries
Serial Journal Room 14E-210
Cambridge, MA 02139

Director, Ralph M. Parsons Laboratory
Room 48-311
MIT
Cambridge, MA 02139

Marine Resources Information Center
Bldg. E38-320
MIT
Cambridge, MA 02139

Library
Lamont-Doherty Geological Observatory
Colombia University
Palisades, NY 10964

Library
Serials Department
Oregon State University
Corvallis, OR 97331

Pell Marine Science Library
University of Rhode Island
Narragansett Bay Campus
Narragansett, RI 02882

Working Collection
Texas A&M University
Dept. of Oceanography
College Station, TX 77843

Library
Virginia Institute of Marine Science
Gloucester Point, VA 23062

Fisheries-Oceanography Library
151 Oceanography Teaching Bldg.
University of Washington
Seattle, WA 98195

Library
R.S.M.A.S.
University of Miami
4600 Rickenbacker Causeway
Miami, FL 33149
MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS
PUBLISHED BY OCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE
AND TECHNOLOGY DIVISION OF THE OFFICE OF NAVAL RESEARCH

(Revised October 1983)

1 Deputy Under Secretary of Defense
 (Research and Advanced Technology)
 Military Assistant for Environmental Science
 Room 3D129
 Washington, DC 20301

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

3 Attn: (Code applicable to Program) *
1 Attn: Code 420C
2 Attn: Code 102C

Commanding Officer
Naval Research Laboratory
Washington, DC 20375

6 Attn: Library Code 2627
1 Attn: Library Code 2620, Mr. Peter Imhof

12 Defense Technical Information Center
 Cameron Station
 Alexandria, VA 22314
 Attn: DCA

Commander
Naval Oceanographic Office
NSTL Station
Bay St. Louis, MS 39522

1 Attn: Code 8100
1 Attn: Code 6000
1 Attn: Code 3300

1 NODC/NOAA
 Code D781
 Wisconsin Avenue, N.W.
 Washington, DC 20235

* Applicable Codes: 422 (PO); 422CB (Chem/Bio); 422CS (Coastal); 425 (G&G); 425AR (Arctic);
 421 (OE); 421SP (Ships); 425OA (Ocean Acoustics); 425UA (Underwater Acoustics)